
1

Carnegie Mellon University
Spring Programming Competition

Preliminary Version

You can program in C, C++, or Java; note that the judges will re-compile
your programs before testing.

Your programs should read the test data from the standard input and write
results to the standard output; you should not use files for input or output.

All communications with the judges should be through the PC2 environment.

Welcome aboard the famous USS Enterprise (NCC-
1701-D), a Galaxy Class starship that has been
part of the Federation Starfleet since 2363.

While solving these problems, you will learn new facts
about the Enterprise and its crew, which have not been
revealed in the Star Trek television series.

2

Problem A: Takeoff

Ready for the takeoff?

Have you double-checked that
the Enterprise is indeed ready?

When a starship is about to leave a Federation space dock and boldly go where no man,
woman, or android has gone before, its captain must ensure that it has sufficient supply of
all necessary equipment and materials, such as deuterium and anti-deuterium, dilithium
crystals, trillium, photon and quantum torpedoes, and hand phasers. The list of standard
supplies is very lengthy, but fortunately the captain does not have to go through it
manually. Every Federation ship has an onboard computer, which can instantly determine
whether the ship is ready for its mission. A human engineer has to write a program for
checking supplies, and then the computer will execute it before every takeoff. Your task
is to implement this program.

Input

The input includes multiple test cases, which describe different pre-flight situations; the
number of cases is at most 20. A test case is a list of required supplies, one supply type
per line; the number of lines in a test case is between 1 and 1000. Every line includes a
lower-case alphabetical string, whose length is between 1 and 20, followed by two
integer values between 1 and 1000, separated by single spaces. The string is the name of
a supply type, which is unique within the test case; the first integer is the amount of this
supply available onboard; and the second integer is the amount required for the mission.
If the first number is strictly smaller than the second, the ship does not have enough of
this supply. The last line of a test case is “. 0 0” (a period and two zeros, separated by
single spaces), which does not represent a supply. The last line of the input, after the last
test case, is “end 0 0”.

Output

For each test case, the output is a single line. If all supplies are sufficient, the output is
“Ready for the takeoff”. If not, the output begins with the word “Load:”, followed
by the names of insufficient supplies, in the same order as in the input, separated by
single spaces.

3

Sample input

deuterium 100 90
antideuterium 100 90
dilithium 80 80
trillium 21 20
photontorpedoes 200 200
quantumtorpedoes 500 1
phasers 1000 1000
. 0 0
poodles 999 1000
rottweilers 1 2
sehlats 1000 1000
targs 2 1
. 0 0
end 0 0

Sample output

Ready for the takeoff
Load: poodles rottweilers

4

Problem B: Beverley Crusher

Commander Beverley Crusher, M.D. (human) is the
chief medical officer of the Enterprise. Since most of
the Enterprise crew members are very healthy,
Dr. Crusher usually sees only a few patients a day, and
has plenty of time to work on academic research and
participate in away missions. Occasionally, however,
the Enterprise faces major medical emergences, and
then Dr. Crusher has to work around the clock.

The latest emergency has begun after the crew
returned from a shore leave on the planet of Risa.
Dr. Crusher has discovered that most crew members caught the Risan flu, which is an
annoying disease that makes a person sneezy, itchy, and sleepy for several days.
Fortunately, Federation scientists have recently developed a medication for the Risan flu,
which can prevent all its symptoms, but only if used on its early stage. The administering
of this medication is a complex procedure, and Dr. Crusher is the only physician onboard
who can do it properly. She needs five minutes per patient, and she may not have time to
cure everybody.

Dr. Crusher has asked her assistants to evaluate the flu severity for every patient
and determine how soon each patient needs to get the drug. It turns out that some need it
right away, some can wait a few hours, and some with milder cases can wait even longer.
Now Dr. Crusher has to triage her patients, that is, determine the order of attending to
them that would enable her to cure the maximal number of people. Your task is to
implement a program for the triage.

Input

The input includes multiple test cases, which describe different emergency scenarios; the
number of cases is at most 20. A test case is a list of patients, each on a separate line; the
number of patients in a test case is between 1 and 1000. The description of a patient is an
integer between 1 and 1440, which is the number of minutes within which he or she
needs to get the drug. For instance, if this number is 60, the patient needs to get it within
an hour, which means that Dr. Crusher has to begin administering it within 55 minutes.
The last line of a test case is “0” (zero), which does not represent a patient. The last line
of the input after the last test case is “─1”.

Output

For each test case, the output is an integer on a separate line, which is the maximal
number of patients that can be cured.

5

Sample input

10
10
10
10
0
5
10
15
20
0
4
9
14
19
0
1
1
1
1
0
5
0
─1

Sample output

2
4
3
0
1

6

Problem C: Wesley Crusher

Wesley Crusher (human) is the son of Dr. Beverly Crusher,
and he travels with Dr. Crusher on the Enterprise. He is a
talented and somewhat geeky teenager, who often
entertains himself by building high-tech toys. His latest
invention is an insect-sized robot for the cutting of
rectangular plastic sheets, which crawls over a sheet and
makes a cut along its path. The robot inputs a string of
letters L, R, and S, which defines its path, and moves over a
rectangular sheet according to the following rules (see
example pictures on the next page):

• The robot starts in the lower left corner of the sheet, facing upward.
• At each step, the robot performs two actions:

(1) It reads the next letter of the input, which determines whether it has to turn. If the
letter is L, it turns left; if R, it turns right; if S (straight), it makes no turn.

(2) It crawls one inch in the resulting direction.
• After reading the last letter and completing its last step, the robot stops. Note that the

overall length of its path (in inches) equals the length of the input string.

Wesley randomly generated a few strings and used them to test the robot, but realized
that random strings usually give uninteresting results. The robot sometimes stops in the
middle of the sheet without cutting it in two, sometimes crawls repeatedly over the same
spot, and sometimes falls off the sheet. After getting these disappointing outcomes,
Wesley has concluded that a string produces an interesting result only if it satisfies the
following constraints:

• At the end, the robot returns to its starting point; that is, it stops in the lower left

corner of the sheet.
• The robot never visits the same point twice, with the exception of returning to its

starting point.
• The robot never leaves the sheet; however, it can crawl along the sheet’s edges.

Your task is to help Wesley select “interesting” inputs. Specifically, you should
implement a program that reads a potential input string and checks whether it satisfies
Wesley’s constraints.

7

Input

The input includes multiple test cases, which represent different plastic sheets and input
strings; the number of cases is at most 1000. A test case comprises two integers and a
string of capital letters L, R, and S, all on the same line. It includes a single space between
the two integers, and another single space between the second integer and the string. The
first integer is the width of the sheet (in inches), that is, its size along the horizontal
dimension, and the second is the sheet height; both integers are between 1 and 1000. The
string represents the robot’s input; its length is between 4 and 4000. The last line of the
input, after the last test case, is “0 0 .” (two zeros and a period).

Output

For each test case, the output is a single line. If the robot’s path satisfies all three
constraints, the output is “interesting”; else, it is “uninteresting”.

Sample input

1 1 SRRR
10 10 RLLL
1000 1000 SRLRSSRLRRSRLLRS
2 2 SSRRS
2 2 SSLLSL
2 2 SRLRRRLR
0 0 .

Sample output

interesting
interesting
interesting
uninteresting
uninteresting
uninteresting

8

Problem D: Data

Lieutenant Commander Data (android) is the only
robotic member of the Enterprise crew. While his
positronic brain is inferior to the human mind in several
important respects, such as the ability to experience
emotions, it is superior on most technical problems.
Data thinks with the speed of a computer and near-
instantly completes all intellectual tasks involved in his
duties, which means that he is bored most of the time.
To alleviate the boredom, he occasionally invents
puzzles to occupy his mind. For instance, Data likes to play the find-squares game, which
involves identifying squares in images of a star sky. He would briefly look out of the
window and memorize the view of the sky, and then he would count all squares formed
by stars in the memorized image. He counts only nonzero-size squares, that is, he does
not view a single star as a square. To verify the accuracy of his counting, he needs a
computer program that would solve the same problem and tell him the correct answer.
Your task is to implement this program.

Input

The input includes multiple test cases, which correspond to different sky images; the
number of cases is at most 20. A test case is a list of stars, each on a separate line; the
description of a star consists of two integers between 1 and 1000, separated by a single
space, which represent its Cartesian coordinates in the image. The number of stars in a
test case is between 4 and 4000, and they all have distinct coordinates. The last line of a
test case is “0 0” (two zeros, separated by a single space), which does not represent a
star. The last line of the input, after the last test case, is “─1 ─1”.

Output

For each test case, the output is an integer on a separate line, which is the number of
distinct squares formed by the stars.

9

Sample input

1 1
1 6
1 11
6 1
6 6
6 11
11 1
11 6
11 11
0 0
1 2
2 4
3 1
4 3
0 0
1 1
2 2
3 3
4 4
0 0
─1 ─1

Sample output

6
1
0

10

Problem E: Geordi La Forge

Lieutenant Commander Geordi La Forge (human) is the chief
engineer of the Enterprise, and his main duty is the maintenance
of the ship’s warp drive. When diagnosing and fixing engine
problems, he often has to crawl through Jefferies tubes, which
are painfully narrow tunnels through the ship’s critical systems.
After spending over 2048 hours in those tubes and getting
permanent sore spots on his knees and elbows, La Forge finally
got around to building a robot that would do most of the
crawling. This robot is a small flying ball with an anti-gravity
engine (see the picture), powered by an onboard battery. It can float through the air along
a Jefferies tube, transmit images and sounds to the human operator, and use its retractable
arms for minor repairs.

Unfortunately, its engine quickly drains the battery and the robot cannot travel
more than a few feet without recharging. To alleviate this problem, La Forge installed
electric outlets in the tubes and enabled the robot to charge from them. He has later
realized that he installed too many outlets and the robot may skip some of them. The
related optimization task is to decide which outlets to use in order to minimize the
number of recharging stops. To formalize this problem, La Forge has made the following
assumptions:

• The robot has to travel the full length of a tube, from its entrance

to its far end and then back to the entrance.
• When the robot enters the tube, its battery is fully charged.
• When the robot stops to recharge, it regains the full charge.
• The power level upon returning to the entrance does not matter;

at that point, the robot may have no power or any partial charge.

Your task is to write a program that determines the minimal number of recharging stops.

Input

The input includes multiple test cases; the number of cases is at most 20. The first line of
a test case is an integer between 1 and 100000, which is the maximal distance covered by
a robot without recharging. The other lines specify electric outlets, one per line; the
number of outlets in a test case is between 1 and 1000. The description of an outlet is a
single integer between 1 and 100000, which is its distance from the tube entrance. These
outlet distances are distinct and listed in increasing order. The last outlet is always at the
very end of the tube, which means that its location determines the tube length. The last
line of a test case is “0” (zero), which does not represent an outlet. The last line of the
input after the last test case is “─1”.

11

Output

For each test case, the output is a single line. If the robot can reach the far end of the tube
and return to the entrance, the output is a single integer, which is the minimal number of
recharging stops; else, the output is “need more outlets”.

Sample input

100
10
15
25
45
50
0
60
10
15
25
45
50
0
20
10
15
25
45
50
0
10
10
15
25
45
50
0
─1

Sample output

0
1
6
need more outlets

12

Problem F: Jean-Luc Picard

Captain Jean-Luc Picard (human) is the captain of
the Enterprise. If you have watched Star Trek: The
Next Generation, you may have gotten the
impression that his job mostly involves glorious
and fun activities, such a blowing up enemy ships,
leading dangerous away missions, and saving
human and alien settlements from terrible disasters; however, nothing can be further from
the truth. While the captain may occasionally do something heroic, his main job is the
same as that of all high-ranking officials, which is paperwork.

Picard has to produce innumerable mission statements, supply requests, reports of
encounters with alien races, crew evaluations, and so on. When he gets up in the
morning, his first task is to decide which reports to write today and then determine the
order of working on them. The Starfleet regulations specify which documents are to be
completed before which others, thus creating numerous ordering constrains. For instance,
he has to produce “justifications for the firing of individual photon torpedoes” before a
“summary on the mission use of torpedoes”, which in turn has to be done before a
“request for additional torpedoes.” As another example, he has to write an “abbreviated
quarterly evaluation of the junior officers” before a “detailed quarterly evaluation of the
senior officers”, and only then he can fill out a “quarterly self-assessment report”.

By the lunchtime, he is usually sick of his paperwork and desperately needs to
take his mind off the Starfleet bureaucracy. If Enterprise happens to face a major crisis,
such as a Romulan attack or a supernova explosion, then Picard uses this opportunity to
put aside his reports and make a few brilliant split-second decisions. If there is no crisis,
he looks for other distractions, such as helping Geordi fix engine problems, playing poker
with Riker and Worf, or even helping Data count squares in sky images.

Today, Picard has invented a new unproductive activity for his lunch break. He
has decided to count the number of all possible orderings of today’s reports that would be
consistent with the Starfleet regulations. After spending half-hour on that puzzle, he has
realized that the number of orderings is very large, and there is no way to count them by
hand. Picard has thought of asking Data’s help, but Data has turned out to be
unreachable. He is currently on an away mission, and the Enterprise has temporarily lost
communications with that away team because of the super-anti-photonic-positronic
hyper-warp fluctuations in the nearby space.

The only way to solve Picard’s puzzle is to write a program that would count all
possible orderings, but the captain does not have much experience with software
engineering. Your task is to implement this program for him.

13

Input

The input includes multiple test cases; the number of cases is at most 20. A test case is a
list of distinct ordering constraints, each on a separate line. A constraint consists of two
lower-case alphabetical strings, separated by a single space, which represent specific
documents; the length of each string is between 1 and 20. The first document in the
constraint must be completed before the second; for example, the constraint
“juniorevaluation seniorevaluation” indicates that the evaluation of the junior
officers must be done before that of the senior officers. The input includes at least one
constraint for each document, which means that the constraint list includes all documents.
The number of constraints in a test case is between 1 and 1000. The last line of a test case
is “. .” (two periods, separated by a single space), which does not represent a constraint.
The last line of the input after the last test case is “end .”.

Output

For each test case, the output is an integer on a separate line, which is the number of
distinct orderings consistent with given constraints. You may assume that the number of
orderings is at most 10000. Note that a constraint set may be inconsistent, and then the
output must be “0”.

Sample input

torpedojustification torpedosummary
torpedosummary torpedorequest
juniorevaluation seniorevaluation
seniorevaluation selfassessment
. .
a b
a c
a d
b c
b d
c d
. .
a b
b c
c d
d a
. .
end .

Sample output

20
1
0

14

Problem G: William Riker

Captain William T. Riker (human) is the second in
command on the Enterprise and he occasionally gets
the opportunity to be the acting captain while Picard is
away. Riker likes these opportunities and tries to be an
exemplary captain, but his lack of experience
sometimes leads to blunders. His latest blunder
happened when the ship was stationed near the planet
of Risa (see the picture) and Picard took a short
medical leave for a checkup of his artificial heart.

Riker had long noticed that the holodeck, which
is the ship’s virtual-reality facility, seemed to be the
most dangerous place on the Enterprise. Its safety
protocols frequently failed, trapping people inside the holodeck, causing injuries, and
even creating artificial characters that posed a threat to the ship as a whole. While the
Enterprise was waiting for its next mission on a Risan orbit, Riker decided to get to the
bottom of the holodeck problems and assigned Geordi La Forge to check its software. La
Forge readily found multiple bugs, legacy problems, viruses, worms, Trojan horses,
spyware, and adware, some of which were going back several centuries to the days of
Microsoft. He uncovered so many problems it was a wonder the holodeck had not yet
killed anyone. To prevent further accidents, Riker shut down the holodeck and scheduled
a full software reinstall during the next round of ship maintenance in a Federation dock.

Unfortunately, his decision led to a morale plunge, as most crew members relied
on the holodeck as their main entertainment. To boost the morale, Riker let all
nonessential personnel take a four-day shore leave on Risa. Since the Enterprise had a
week until its next mission, Riker saw no harm in letting the crew enjoy themselves.

The next day, Picard unexpectedly returned from his leave and brought top-secret
orders—so secret they could not be transmitted over any communication channel—that
required the Enterprise to depart immediately to an Omega-quadrant through a newly
discovered wormhole. Since most crew members were on the planet, Picard had to delay
the departure and tasked the embarrassed Riker with getting everyone back.

As usual, the ship’s transporter did not work, ostensibly because of solar flairs,
but mostly because the episode authors wanted to show shots of a shuttlecraft flying over
the planet. Riker hoped to gather all crew in one shuttle flight, but the task turned out far
more complex. First, the number of crew members on the planet far exceeded the shuttle
capacity. Second, a lot of them had caught various strains of Risan flu and had to be

quarantined. The shuttle should not transport
healthy and sick people together, and also it
should not transport people with different flu
strains together, to avoid spread of the
infection. In one flight, it can carry only
healthy people or only people with the same
flu strain, up to its capacity. Given these
constraints, Riker has to determine the
minimal required number of flights. Your
task is to implement a program for this task.

15

Input

The input includes multiple test cases, which describe different scenarios; the number of
cases is at most 20. A test case is a list of integers between 1 and 1000, each on a separate
line. The first integer is the shuttle capacity, the second is the number of healthy crew
members on Risa, and the other values show the number of crew members with different
flu strains. For instance, the first case in the sample input shows that the shuttle capacity
is 10; the number of healthy people is 25; and the number of sick people with the first
strain is 10, with the second strain is 5, and with the third strain is 51. The number of
different strains is between 1 and 1000. The last line of a test case is “0” (zero), which
does not represent a flu strain. The last line of the input, after the last test case, is “─1”.

Output

For each test case, the output is an integer on a separate line, which is the minimal
required number of shuttle flights.

Sample input

10
25
10
5
51
0
239
1
1
0
1
239
239
0
2
1
2
3
4
5
6
7
8
0
─1

Sample output

11
2
478
20

16

Problem H: Deanna Troy

Lieutenant Commander Deanna Troy (half-Betazoid, half-
human) is the ship counselor, whose duties are similar to
those of a psychotherapist. She helps crew members
address their social and psychological challenges, and she
also works with senior officers to ensure that crew
assignments do not lead to personal problems or conflicts
of interest. In particular, her duties include screening the
composition of away teams.

When the Enterprise explores a newly discovered
planetary system, Captain Picard sends several away teams
to each terrestrial planet. He assigns the leader of every
team, and he also selects one of the team leaders on each
planet to serve as the coordinator of all activities on that planet. After making a tentative
team selection, the captain passes his roster to Troy, who checks that it does not create
social problems. She uses her records of current and past marriages, current and past
romantic relationships, and friendships to verify that the away teams satisfy the following
rules.

• If two people are best friends and they both participate in exploring the planets, they
must be in the same team. Note that this rule does not apply to the situation when a
person is sent to explore a planet while her/his best friend remains on the ship, which
is perfectly acceptable.

• A person and her/his former spouse must not be on the same planet; however, this
rule does not apply if a person and her/his former spouse are now best friends.

• A person and her/his former romantic partner must not be in the same team; however,
this rule does not apply in the following two cases:
o She/he and her/his former romantic partner are now best friends.
o She/he is now married and her/his former romantic partner is also married.

• A group leader cannot have her/his spouse or romantic partner in her/his group.
• A planetary coordinator cannot have her/his spouse or romantic partner on the same

planet.

Since manual verification of a team roster against these rules is tedious and error-
prone, Troy wants to automate it, and your task is to implement a program for this task.
You may assume that the number of crew members is at most 1000 and that their
relationships satisfy the following constraints.

• The friendships, marriages, and romantic relationships are symmetric; for
instance, if Deanne is Will’s romantic partner, then Will is Deanne’s partner.

• A married person has one spouse and no other romantic partners.
• An unmarried person has at most one romantic partner; some people may have no

romantic partners.
• If two people are now married, they cannot be “formerly married” to each other at

the same time. If two people were married once, then divorced, and then have
married each other again, they are not considered formerly married to each other.

17

First
test case

Database of
relationships

Last
test case

• A person’s romantic partner cannot be her/his “former romantic partner” at the
same time. If two people were romantic partners in the past, then broke up, and
then have gotten together again, they are not considered former romantic partners.

• A person has at most one best friend; some people may have no friends.
• A person never marries or dates her/his best friend; however, a person may be the

best friend of her/his former spouse or romantic partner.

Note that you cannot assume that the two people in a marriage or a relationship always
have opposite genders. You cannot even assume that every crew member has a gender,
since many of them come from alien species.

Input

The input includes a database of social relationships followed by multiple test cases,
which correspond to different away-team compositions. The input structure is more
complex than in other problems, and its description consists of three sections. The first
section is an explanation of the overall high-level structure of the input, the second is the
syntax of a relationship database, and the third is a specification of test cases.

High-level structure: The first part of the input is a relationship database, which
comprises five lists: friendships, current marriages, former marriages, current romances,
and former romances. The rest of the input is a set of test cases, where each case specifies
away teams and their distribution among planets; the number of cases is at most 20. The
overall input structure is as follows:

<friendships>
endlist .
<current marriages>
endlist .
<former marriages>
endlist .
<current romances>
endlist .
<former romances>
endlist .
enddatabase .
<teams for a planet>
endplanet .
 …
<teams for a planet>
endplanet .
endcase .
 …
<teams for a planet>
endplanet .
 …
<teams for a planet>
endplanet .
endcase .
endinput .

18

Relationships: The database of relationships consists of five lists (see above), where each
list has the following format:

<name> <name>
<name> <name>
 …
<name> <name>

That is, a relationship list is a set of specific relationships, each on a separate line. The
description of a relationship consists of two crew-member names, separated by a single
space. We represent names by lower-case alphabetical strings, with length between 1 and
20 characters, and we assume that each crew member has a unique name.

The number of relationships in a list is between 1 and 100000, and all listed
relationships are distinct. Note that, while a list cannot include the same pair of names
twice, different relationship lists may include the same pair. For instance, if Mary and
John were romantic parnters, then got married, then divorced, and later have become best
friends, then the pair “mary john” (or “john mary”) is in three lists: friendships, former
marriages, and former romances.

Test cases: A test case includes away-team rosters for multiple planets (see above); the
number of planets is between 1 and 100. For each planet, the roster of teams sent to that
planet has the following format:

<coordinator-name> <name> ... <name>
<leader-name> <name> ... <name>
 …
<leader-name> <name> ... <name>

That is, the roster for a planet is a set of teams, one team per line; the number of teams
sent to a planet is between 1 and 10. A team description comprises crew-member names,
separated by single spaces; the number of people in a team is between 2 and 10. The team
member listed first is the team leader; the leader of the first team is the planetary
coordinator. Note that a person may be on only one team, which means that each name
occurs at most once within a test case.

Output

For each test case, the output is a single line. If the away teams satisfy all Deanna’s rules,
the output is “approved”; else, it is “need changes”.

19

Sample input

jeanluc will
geordi miles
tpol trip
mary john
endlist .
keiko miles
beverly jeanluc
endlist .
mary john
endlist .
deanna will
endlist .
deanna worf
jenna data
lisa trip
tpol trip
mary john
endlist .
enddatabase .
jeanluc will deanna
geordi miles keiko
endplanet .
tpol trip beverly
worf data lisa
mary john
endplanet .
endcase .
jeanluc geordi beverly
miles will keiko
endplanet .
endcase .
data jenna
endplanet .
jeanluc deanna worf
endplanet .
endcase .
endinput .

Sample output

approved
need changes
need changes

20

Problem I: Worf

Lieutenant Commander Worf (Klingon) was born in the
Klingon Empire, which is a nation of warriors, with culture
focused on the military honor and glory. Although Worf
grew up in a human family and became a Federation citizen,
he has accepted many values of his original homeland,
including Klingon pastime activities.

In particular, he likes to play catch-a-targ; it is an
ancient Klingon game involving two warriors and one targ,
which is a Klingon pet animal somewhat similar to a boar
(see the picture). The two warriors play as a team, trying to
catch the targ, while the frightened animal does its best to
avoid the capture as long as possible.

Unfortunately, the warriors sometime fail to capture the targ and have to admit
their defeat, which is a great dishonor. The thoughts of this possibility cause significant
stress and make the game much less fun. To avoid this problem, Worf has suggested
using a computer to predict the game outcome. If a computer simulation shows that the
warriors will capture the targ, they can enjoy the game without fearing for their honor. If
not, they need to play it on a different terrain that would simplify their task.

After thinking about it, Worf has decided to represent the terrain by an
unweighted undirected graph, which may or may not be connected, where the warriors
and the targ occupy specific nodes and move from node to node along edges (see the
pictures on the next page). The targ makes the first move; it may stay in its current node
or run to one of the adjacent nodes. Then, the warriors make their moves, which are
similar to the targ’s move; that is, each warrior may remain in place or run to an adjacent
node. Then, the targ makes its next move, the warriors make their moves, and so on. Note
that the warriors may sometime share a node and sometime occupy different nodes. If
one of them reaches the targ’s node, he or she captures the animal, thus winning the

game. If the warriors cannot catch the targ in an hour, they admit
their defeat. The game duration in seconds equals the number of
the targ’s moves, which means that the warriors have to capture
it within 3600 moves.

Your task is to implement a program that predicts the
game outcome, assuming that the targ and the warriors use the
optimal strategy.

Input

The input includes multiple test cases, which correspond to different terrains for playing
the game; the number of cases is at most 20. The first line of a test case is an integer n
between 2 and 50, which is the number of nodes in the graph. We assume that the nodes
are numbered from 1 to n, the targ is initially in node 1, and both warriors are initially in
node n. The other lines are distinct pairs of integers between 1 and n, which represent the
edges. The integers in a pair are separated by a single space, and the first is strictly
smaller than the second. Since all pairs are distinct, their number is at most n · (n − 1) / 2.
The last line of a test case is “0 0” (two zeros, separated by a single space), which does
not represent an edge. The last line of the input, after the last test case, is “─1 ─1”.

21

1 2
targ warriors

1 2
targ warriors

1 2
targ

warriors

3

7 8 9

4 5 6

1 2
targ

warriors

3

7 8 9

4 5 6

Output

For each test case, the output is an integer on a separate line, which is the duration of an
optimally played game. If the warriors capture the targ, the output is the number of the
targ’s moves before the capture, which is between 1 and 3600; else, the output is 3601.

Sample input

2
1 2
0 0
2
0 0
9
1 2
1 4
2 3
2 5
3 6
4 5
4 7
5 6
5 8
6 9
7 8
8 9
0 0
9
1 2
1 3
1 4
1 7
2 3
2 5
2 8
3 6
3 9
4 5
4 6
4 7
5 6
5 8
6 9
7 8
7 9
8 9
0 0
─1 ─1

Sample output

1
3601
4
3601

22

Problem J: Q

Q is not a member of the Enterprise crew. He is a
mysterious near-omnipotent being, capable of affecting the
universe on a cosmic scale, who occasionally entertains
himself by toying with the Enterprise crew. He would show
up unexpectedly on the Enterprise and give Captain Picard
a tough test, sometimes threatening to destroy the
humankind if the captain fails. Since Picard has passed all
tests so far, it is unclear whether Q would actually carry out
his threat in case of a failure.

Recently, Q has learned about NP-completeness and
has understood that the Subset Sum Problem is NP-hard,
which seems to imply that any program for solving it would be impractically slow. To put
his new knowledge to use, he has tasked Picard and his crew with writing an efficient
Subset Sum implementation and, as usual, has threatened to wipe out the humankind if
they do not produce it by the end of the day. Specifically, Picard has to deliver a program
that inputs a set of integers, which may include up to 40 elements, and determines
whether it has a subset that sums to zero.

Luckily for the humans, Q is not strong in algorithm theory and has not realized
that his bound on the input size allows an efficient solution. Less luckily, the Enterprise
crew does not include any algorithms experts who can come up with an efficient
implementation. Your task is to help Picard by implementing a solution to Q’s problem.

Input

The input includes multiple test cases, which represent different instances of the Subset
Sum Problem; the number of cases is at most 20. A test case is a set of distinct nonzero
integers between ─50000000 and 50000000, each on a separate line; the number of
integers in a test case is between 2 and 40. The last line of a test case is “0” (zero), which
is not an element of the given set. The last line of the input, after the last test case, is
239239239.

Output

For each test case, the output is a single line. If a given set of integers has a nonempty
subset that sums to zero, the output is “yes”; else, it is “no”.

23

Sample input

1000000
─1000000
0
2
4
10
─5
─9
0
1
2
3
4
─11
0
1
2
4
8
16
32
64
─128
─256
─512
─1024
0
239239239

Sample output

yes
yes
no
no

