
NWERC 2007
The 2007 ACM Northwestern European Programming Contest

Utrecht University, The Netherlands

The Problem Set

A Assemble
B March of the Penguins
C Containers
D Youth Hostel Dorm
E Escape from Enemy Territory
F Flight Safety
G Summits
H Obfuscation
I Tower Parking
J Walk

Almost blank page

Problem A: Assemble 1

A Assemble

Recently your team noticed that the computer you use to practice for programming contests
is not good enough anymore. Therefore, you decide to buy a new computer.

To make the ideal computer for your needs, you decide to buy separate components and
assemble the computer yourself. You need to buy exactly one of each type of component.

The problem is which components to buy. As you all know, the quality of a computer is
equal to the quality of its weakest component. Therefore, you want to maximize the quality
of the component with the lowest quality, while not exceeding your budget.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with two integers: 1 ≤ n ≤ 1 000, the number of available components and
1 ≤ b ≤ 1 000 000 000, your budget.

• n lines in the following format: “type name price quality”, where type is a string
with the type of the component, name is a string with the unique name of the com-
ponent, price is an integer (0 ≤ price ≤ 1 000 000) which represents the price of the
component and quality is an integer (0 ≤ quality ≤ 1 000 000 000) which represents
the quality of the component (higher is better). The strings contain only letters, digits
and underscores and have a maximal length of 20 characters.

It will always possible to construct a computer with your budget.

Output

Per testcase:

• One line with one integer: the maximal possible quality.

2 Problem A: Assemble

Sample in- and output

Input Output

1
18 800
processor 3500_MHz 66 5
processor 4200_MHz 103 7
processor 5000_MHz 156 9
processor 6000_MHz 219 12
memory 1_GB 35 3
memory 2_GB 88 6
memory 4_GB 170 12
mainbord all_onboard 52 10
harddisk 250_GB 54 10
harddisk 500_FB 99 12
casing midi 36 10
monitor 17_inch 157 5
monitor 19_inch 175 7
monitor 20_inch 210 9
monitor 22_inch 293 12
mouse cordless_optical 18 12
mouse microsoft 30 9
keyboard office 4 10

9

Problem B: March of the Penguins 3

B March of the Penguins

Somewhere near the south pole, a number of penguins are standing on a number of ice
floes. Being social animals, the penguins would like to get together, all on the same floe. The
penguins do not want to get wet, so they have use their limited jump distance to get together
by jumping from piece to piece. However, temperatures have been high lately, and the floes
are showing cracks, and they get damaged further by the force needed to jump to another
floe. Fortunately the penguins are real experts on cracking ice floes, and know exactly how
many times a penguin can jump off each floe before it disintegrates and disappears. Landing
on an ice floe does not damage it. You have to help the penguins find all floes where they
can meet.

A sample layout of ice floes with 3 penguins on them.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with the integer N (1 ≤ N ≤ 100) and a floating-point number D (0 ≤ D ≤
100 000), denoting the number of ice pieces and the maximum distance a penguin can
jump.

• N lines, each line containing xi, yi, ni and mi, denoting for each ice piece its X and Y
coordinate, the number of penguins on it and the maximum number of times a penguin
can jump off this piece before it disappears (−10 000 ≤ xi, yi ≤ 10 000, 0 ≤ ni ≤ 10,
1 ≤ mi ≤ 200).

Output

Per testcase:

• One line containing a space-separated list of 0-based indices of the pieces on which all
penguins can meet. If no such piece exists, output a line with the single number −1.

4 Problem B: March of the Penguins

Sample in- and output

Input Output

2
5 3.5
1 1 1 1
2 3 0 1
3 5 1 1
5 1 1 1
5 4 0 1
3 1.1
-1 0 5 10
0 0 3 9
2 0 1 1

1 2 4
-1

Problem C: Containers 5

C Containers

At a container terminal, containers arrive from the hinterland, one by one, by rail, by road,
or by small ships. The containers are piled up as they arrive. Then the huge cargo ships
arrive, each one capable of carrying thousands of containers. The containers are loaded into
the ships that will bring them to far away shores. Or the other way round, containers are
brought in over sea, piled up, and transported to the hinterland one by one. Anyway, a huge
parking lot is needed, to store the containers waiting for further transportation.

Building the new container terminal at the mouth of the river was a good choice. But
there are disadvantages as well. The ground is very muddy, and building on firm ground
would have been substantially cheaper. It will be important to build the parking lot not
larger than necessary.

A container is 40 feet long and 8 feet wide. Containers are stacked, but a stack will be
at most five containers high. The stacks are organized in rows. Next to a container stack,
and between two container stacks (along the long side of the containers) a space of 2 feet
is needed for catching the containers. Next to a row of stacks, and between two stacks
(along the short side of the containers) a space of 4 feet is needed for the crane that lifts the
containers. All containers are placed in the same direction, as the cranes can not make turns
on the parking lot.

The parking lot should be rectangular. Given the required capacity of the parking lot,
what will be the best dimension for the parking lot? In the first place the area should be
minimal. The second condition is that the parking lot should be as square as possible.

Below you see a plan for a parking lot with a capacity of 8 stacks. Two rows of four
containers each turns out to be the best solution here, with a total area of 92 × 42 = 3864.

A parking lot with 8 container stacks.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• A single positive integer n (n ≤ 1012) on a single line: the required capacity (number
of containers) for the parking lot.

6 Problem C: Containers

Output

Per testcase:

• A single line, containing the length, width (length ≥ width) and area of the optimal
solution. The optimal solution has the least possible area, and if there are multiple
solutions having the same area, the difference length − width should be minimal.

Use the sample format.

Sample in- and output

Input Output

6
1
15
22
29
36
43

48 X 12 = 576
48 X 32 = 1536
52 X 48 = 2496
92 X 32 = 2944
92 X 42 = 3864
136 X 32 = 4352

Problem D: Youth Hostel Dorm 7

D Youth Hostel Dorm

The Utrecht Youth Hostel has a giant dorm which usually accommodates all customers eas-
ily. With NWERC in town, however, lots of people would like to stay there and all the space
available in the dorm should be used as efficiently as possible. You are assigned to provide
the dorm layout.

The size of the dorm is given and the layout should consist of a map of that particular
size. The map should display one ‘E’, the point of entrance of the dorm, and furthermore
‘B’s and ‘.’s, indicating beds and empty spaces. The entrance should be located somewhere
on the boundary of the dorm and every single bed should be reachable by starting at the
entrance and walking through empty squares only. You can only walk in vertical and hori-
zontal directions.

The provided layout should contain as many beds as possible.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with two integers l and w with 1 ≤ l, w ≤ 8: the size of the dorm.

Output

Per testcase:

• l lines with w characters: the dorm layout. Any layout with the maximum number of
beds is correct.

Sample in- and output

Input Output

3
1 1
4 7
3 8

E
B.B.BEB
B.BBB.B
B.....B
B.BBB.B
BBBBBBBB
.......E
BBBBBBBB

Almost blank page

Problem E: Escape from Enemy Territory 9

E Escape from Enemy Territory

A small group of commandos has infiltrated deep into enemy territory. They have just ac-
complished their mission and now have to return to their rendezvous point. Of course they
don’t want to get caught even if the mission is already over. Therefore they decide to take
the route that will keep them as far away from any enemy base as possible.

Being well prepared for the mission, they have a detailed map of the area which marks
all (known) enemy bases, their current position and the rendezvous point. For simplicity,
we view the the map as a rectangular grid with integer coordinates (x, y) where 0 ≤ x <
X, 0 ≤ y < Y . Furthermore, we approximate movements as horizontal and vertical steps
on this grid, so we use Manhattan distance: dist((x1, y1), (x2, y2)) = |x2−x1|+ |y2− y1|. The
commandos can only travel in vertical and horizontal directions at each step.

Can you help them find the best route? Of course, in case that there are multiple routes
that keep the same minimum distance to enemy bases, the commandos want to take a short-
est route that does so. Furthermore, they don’t want to take a route off their map as it could
take them in unknown, dangerous areas, but you don’t have to worry about unknown en-
emy bases off the map.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with three positive numbers N,X, Y . 1 ≤ N ≤ 10 000 is the number of enemy
bases and 1 ≤ X, Y ≤ 1 000 the size of the map: coordinates x, y are on the map if
0 ≤ x < X, 0 ≤ y < Y .

• One line containing two pairs of coordinates xi, yi and xr, yr: the initial position of the
commandos and the rendezvous point.

• N lines each containing one pair of coordinates x, y of an enemy base.

All pairs of coordinates are on the map and different from each other.

Output

Per testcase:

• One line with two numbers separated by one space: the minimum separation from an
enemy base and the length of the route.

10 Problem E: Escape from Enemy Territory

Sample in- and output

Input Output

2
1 2 2
0 0 1 1
0 1
2 5 6
0 0 4 0
2 1
2 3

1 2
2 14

Problem F: Flight Safety 11

F Flight Safety

Safety is an important issue when planning flights. First and foremost, one should of course
take every possible measure to make sure that the trip is uneventful and that no incidents
occur. But even then, one should always be prepared for the worst and try to make sure that
if an incident does happen, people’s chances of surviving are as high as possible.

When making an emergency landing over water, the distance to the nearest land is a
critical factor. In general, the further out on open waters, the worse are the odds of survival.
Thus, one important safety parameter of a flight is how far away from the nearest land any
part of the flight will take you. Your job is to write a program which, given a flight route,
will determine this distance.

To simplify matters, we model the world as a 2-dimensional plane rather than a sphere.
We model continents as polygons, and a flight route as a sequence of key points connected
by straight line segments. Flight routes always start and end strictly inside a continent, but
intermediate key points may be located over water. Continents do not intersect themselves
or touch each other.

Second sample case (furthest point marked with a square).

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line containing two integers C (1 ≤ C ≤ 20) and N (2 ≤ N ≤ 20), where C is the
number of continents and N is the number of key points in the flight route.

• N lines each containing two integers X, Y giving the coordinates of the key points,
from first to last.

• The descriptions of the C continents. Each continent description starts with a line
containing an integer M (3 ≤ M ≤ 30) giving the number of vertices of this continent.
It is followed by M lines, each containing a pair of integers X, Y giving the coordinates
of the M vertices, in either clockwise or counter-clockwise order.

Every coordinate in the input is between −10 000 and 10 000.

12 Problem F: Flight Safety

Output

For each test case:

• One line with the furthest distance from land that the flight route will go. The answer
should be given with an absolute or relative error of at most 10−3.

Sample in- and output

Input Output

2
1 2
-9 -6
5 1
3
0 16
-16 -12
17 -6
2 3
12 4
16 17
3 9
4
1 0
4 19
19 14
6 12
3
10 10
5 3
18 2

0.000000
2.942685

Problem G: Summits 13

G Summits

You recently started working for the largest map drawing company in the Netherlands. Part
of your job is to determine what the summits in a particular landscape are. Unfortunately, it
is not so easy to determine which points are summits and which are not, because we do not
want to call a small hump a summit. For example look at the landscape given by the sample
input.

We call the points of height 3 summits, since there are no higher points. But although the
points of height 2, which are to the left of the summit of height 3, are all higher than or equal
to their immediate neighbours, we do not want to call them summits, because we can reach
a higher point from them without going to low (the summits of height 3). In contrast, we do
want to call the area of height 2 on the right a summit, since if we would want to walk to the
summit of height 3, we first have to descend to a point with height 0.

After the above example, we introduce the concept of a d-summit. A point, with height
h, is a d-summit if and only if it is impossible to reach a higher point without going through
an area with height smaller than or equal to h− d.

The problem is, given a rectangular grid of integer heights and an integer d, to find the
number of d-summits.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with three integers 1 ≤ h ≤ 500, 1 ≤ w ≤ 500 and 1 ≤ d ≤ 1 000 000 000. h
and w are the dimensions of the map. d is as defined in the text.

• h lines with w integers, where the xth integer on the yth line denotes the height 0 ≤
h ≤ 1 000 000 000 of the point (x, y).

Output

Per testcase:

• One line with the number of summits.

Sample in- and output

Input Output

1
6 10 2
0 0 0 0 0 0 0 0 0 0
0 1 2 1 1 1 1 0 1 0
0 2 1 2 1 3 1 0 0 0
0 1 2 1 3 3 1 1 0 0
0 2 1 2 1 1 1 0 2 0
0 0 0 0 0 0 0 0 0 0

4

Almost blank page

Problem H: Obfuscation 15

H Obfuscation

It is a well-known fact that if you mix up the letters of a word, while leaving the first and last
letters in their places, words still remain readable. For example, the sentence “tihs snetncee
mkaes prfecet sesne”, makes perfect sense to most people.

If you remove all spaces from a sentence, it still remains perfectly readable, see for exam-
ple: “thissentencemakesperfectsense”, however if you combine these two things, first shuf-
fling, then removing spaces, things get hard. The following sentence is harder to decipher:
“tihssnetnceemkaesprfecetsesne”.

You’re given a sentence in the last form, together with a dictionary of valid words and
are asked to decipher the text.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with a string s: the sentence to decipher. The sentence consists of lowercase
letters and has a length of at least 1 and at most 1 000 characters.

• One line with an integer n with 1 ≤ n ≤ 10 000: the number of words in the dictionary.

• n lines with one word each. A word consists of lowercase letters and has a length of at
least 1 and at most 100 characters. All the words are unique.

Output

Per testcase:

• One line with the deciphered sentence, if it is possible to uniquely decipher it. Other-
wise “impossible” or “ambiguous”, depending on which is the case.

16 Problem H: Obfuscation

Sample in- and output

Input Output

3
tihssnetnceemkaesprfecetsesne
5
makes
perfect
sense
sentence
this
hitehre
2
there
hello
hitehre
3
hi
there
three

this sentence makes perfect sense
impossible
ambiguous

Problem I: Tower Parking 17

I Tower Parking

There is a new revolution in the parking lot business: the parking tower. The concept is
simple: you drive your car into the elevator at the entrance of the tower, and the elevator
and conveyor belts drag the car to an empty parking spot, where the car remains until you
pick it up. When you return, the elevator and conveyor belts move your car back to the
entrance and you’re done.

The layout of the tower is simple. There is one central elevator that transports the cars
between the different floors. On each floor there is one giant circular conveyor belt on which
the cars stand. This belt can move in clockwise and counterclockwise direction. When the
elevator arrives on a floor, it becomes part of the belt so that cars can move through it.

At the end of the day the tower is usually packed with cars and a lot of people come to
pick them up. Customers are processed in a first come first serve order: the elevator is moved
to the floor of the first car, the conveyor belt moves the car on the elevator, the elevator is
moved down again, and so on. We like to know how long it takes before the last customer
gets his car. Moving the elevator one floor up- or downwards takes 10 seconds and moving
a conveyor belt one car in either direction takes 5 seconds.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with two integers h and l with 1 ≤ h ≤ 50 and 2 ≤ l ≤ 50: the height of the
parking tower and the length of the conveyor belts.

• h lines with l integers: the initial placement of the cars. The jth number on the ith line
describes the jth position on the ith floor. This number is −1 if the position is empty,
and r if the position is occupied by the rth car to pick up. The positive numbers form
a consecutive sequence from 1 to the number of cars. The entrance is on the first floor
and the elevator (which is initially empty) is in the first position. There is at least one
car in the parking tower.

Output

Per testcase:

• One line with the number of seconds before the last customer is served.

Sample in- and output

Input Output

2
1 5
-1 2 1 -1 3
3 6
-1 5 6 -1 -1 3
-1 -1 7 -1 2 9
-1 10 4 1 8 -1

25
320

Almost blank page

Problem J: Walk 19

J Walk

Alice would like to visit Bob. However, they live in a hilly landscape, and Alice doesn’t like
to walk in hills. She has a map of the area, showing the height curves. You have to calculate
the total altitude climbed, and the total altitude descended, for the route which minimizes
these numbers. It does not matter how far she has to walk to achieve this.

Since you don’t know what the landscape looks like in between the height curves, you
cannot know exactly how much climb and descent she will actually get in practice, but you
should calculate the minimum possible under optimal conditions based on what you can
deduce from the map.

The map is represented as an xy grid. Alice lives in (0, 0), and Bob lives in (100 000, 0).
The height curves are represented as polygons, where a polygon cannot intersect itself or
another polygon. Furthermore, neither Alice nor Bob lives exactly on a height curve.

Second test case from sample input (compressed).

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with 0 ≤ N ≤ 2 500, the number of height curves.

• One line for each height curve, with 1 ≤ Hi ≤ 1 000 being the height of the curve,
3 ≤ Pi ≤ 2 000 the number of vertices in the polygon, and the vertices x1, y1, ..., xPi , yPi

having integral values −300 000 ≤ xi, yi ≤ 300 000.

There will be no more than 200 000 polygon vertices in total in all test cases.

Output

Per testcase:

• One line with two numbers: the total altitude climbed and the total altitude descended.

20 Problem J: Walk

Sample in- and output

Input Output

2
2
20 3 10 10 0 -10 -10 10
25 3 20 20 0 -20 -20 20
3
100 4 -1 1 1 1 1 -1 -1 -1
300 8 -2 2 2 2 2 -2 5 -2 5 1 6 1 6 -3 -2 -3
50 8 3 3 100001 3 100001 -1 7 -1 7 2 4 2 4 -1 3 -1

5 0
200 250

