
Nordic Collegiate Programming Contest
NCPC 2006

September 30, 2006

The Problemset
A Shoot-out
B Tour Guide
C Nasty Hacks
D Jezzball
E Card Trick
F Traveling Salesman
G Whac-a-Mole
H Random Walking
I Honeycomb Walk

2

NCPC 2006 Problem A: Shoot-out 3

Problem A

Shoot-out

This is back in the Wild West where everybody is fighting
everybody. In particular, there are n cowboys, each with a
revolver. These are rather civilized cowboys, so they have
decided to take turns firing their guns until only one is left
standing. Each of them has a given probability of hitting his
target, and they all know each other’s probability. Furthermore,
they are geniuses and always know which person to aim at
in order to maximize their winning chance, so they are indeed
peculiar cowboys. If there are several equally good targets, one
of those will be chosen at random. Note that a cowboy’s code of
ethics forces him to do his best at killing one of his opponents,
even if intentionally missing would have increased his odds (yes, this can happen!)

Input specifications

On the first line of the input is a single positive integer t, telling the number of test cases
to follow. Each case consists of one line with an integer 2 ≤ n ≤ 13 giving the number
of cowboys, followed by n positive integers giving hit percentages for the cowboys in
the order of their turns.

Output specifications

For each test case, output one line with the percent probabilities for each of them
surviving, in the same order as the input. The numbers should be separated by a
space and be correctly rounded to two decimal places.

Sample input

5

2 1 100

3 100 99 98

3 50 99 100

3 50 99 99

3 50 99 98

Output for sample input

1.00 99.00

2.00 0.00 98.00

25.38 74.37 0.25

25.38 49.50 25.12

25.63 24.63 49.74

4 NCPC 2006 Problem A: Shoot-out

NCPC 2006 Problem B: Tour Guide 5

Problem B

Tour Guide

You are working as a guide on a tour bus for retired people, and
today you have taken your regular Nordic seniors to The Gate
of Heavenly Peace. You let them have a lunch break where they
could do whatever they like. Now you have to get them back
to the bus, but they are all walking in random directions. You
try to intersect them, and send them straight back to the bus.
Minimize the time before the last person is in the bus. You will
always be able to run faster than any of the tour guests, and
they walk with constant speed, no matter what you tell them.
The seniors walk in straight lines, and the only way of changing
their direction is to give them promises of camphor candy. A
senior will neither stop at nor enter the bus before given such a
promise.

Input specifications

A number of test cases consisting of: A line with an integer 1 ≤ n ≤ 8, the number of
people on the tour. A line with an floating point number 1 < v ≤ 100, your maximum
speed (you start in the bus at the origin). Then follow n lines, each containing four
floating point numbers xi yi vi ai, the starting coordinates (−106 ≤ xi, yi ≤ 106), speed
(1 ≤ vi < 100) and direction (0 ≤ ai < 2π) of each of the tour guests.

The input is terminated by a case with n = 0, which should not be processed. All
floating point numbers in the input will be written in standard decimal notation, and
have no more than 10 digits.

Output specifications

For each test case, print a line with the time it takes before everybody is back in the bus
(the origin). Round the answer to the nearest integer. The answer will never be larger
than 106.

Sample input

1

50.0

125.0 175.0 25.0 1.96

3

100.0

40.0 25.0 20.0 5.95

-185.0 195.0 6.0 2.35

30.0 -80.0 23.0 2.76

0

Output for sample input

20

51

6 NCPC 2006 Problem B: Tour Guide

NCPC 2006 Problem C: Nasty Hacks 7

Problem C

Nasty Hacks

You are the CEO of Nasty Hacks Inc., a company that creates
small pieces of malicious software which teenagers may use
to fool their friends. The company has just finished their first
product and it is time to sell it. You want to make as much
money as possible and consider advertising in order to increase
sales. You get an analyst to predict the expected revenue,
both with and without advertising. You now want to make
a decision as to whether you should advertise or not, given the
expected revenues.

Input specifications

The input consists of n cases, and the first line consists of one positive integer giving n.
The next n lines each contain 3 integers, r, e and c. The first, r, is the expected revenue
if you do not advertise, the second, e, is the expected revenue if you do advertise, and
the third, c, is the cost of advertising. You can assume that the input will follow these
restrictions: −106 ≤ r, e ≤ 106 and 0 ≤ c ≤ 106.

Output specifications

Output one line for each test case: “advertise”, “do not advertise” or “does not matter”,
presenting whether it is most profitable to advertise or not, or whether it does not make
any difference.

Sample input

3

0 100 70

100 130 30

-100 -70 40

Output for sample input

advertise

does not matter

do not advertise

8 NCPC 2006 Problem C: Nasty Hacks

NCPC 2006 Problem D: Jezzball 9

Problem D

Jezzball

“JezzBall is a computer game in which
red-and-white ’atoms’ bounce about a
rectangular field of play. The player ad-
vances to later levels (with correspond-
ingly higher numbers of atoms and lives)
by containing the atoms in progressively
smaller spaces, until at least 75% of the
area is blocked off.” (wikipedia.org)

The picture to the right is a screen-
shot from the original game, where the
player has already covered some space
(the black part). In this problem we will
consider a slightly different, non-discrete,
version of the game. That is, while the
length unit is still pixels, you should treat them as non-discrete in the sense that all
objects can be at non-integer coordinates and all movements are continuous.

The size of the playing field will be 1024 × 768 pixels. The atoms that bounce
around will be infinitely thin (and not round balls like in the screenshot). The atoms
will move at a constant speed and only change direction when hitting the edge of the
playing field (x-coordinate 0 and 1024 or y-coordinate 0 and 768), where they bounce
without loss of energy. The atoms do not hit each other.

The player can divide the playing field in two by shooting a horizontal or vertical
ray from (in this problem) a fixed point on the playing field. The ray will then extend
in both directions simultaneously (up and down for vertical rays, or left and right for
horizontal rays) at a uniform speed (in this problem always 200 pixels per second). The
rays will also be infinitely thin. If no atom touches any part of the ray while it’s still
being extended, the field has sucessfully been divided. Otherwise the player loses a
life.

If an atom touches the endpoint of an extending edge, this will not be counted as a
hit. Also, if an atom hits the ray at the same instant it has finished extending, this will
also not count as a hit. Write a program that determines the minimum time the player
must wait before he can start extending a ray so that an atom will not hit it before the
ray has been completed.

Input specifications

Each test case starts with a line containing a single integer n, the number of atoms
(1 ≤ n ≤ 10). Then follows a line containing two integers, x and y, the position where
the two ray ends will start extending from (0 < x < 1024, 0 < y < 768). Then n lines

10 NCPC 2006 Problem D: Jezzball

follow, each containing four integers, x, y, vx and vy describing the initial position and
speed of an atom (0 < x < 1024, 0 < y < 768, 1 ≤ |vx| ≤ 200, 1 ≤ |vy| ≤ 200). The
speed of the atom in the x direction is given by vx, and the speed in the y direction is
given by vy. All positions in each input will be distinct. The input is terminated by a
case where n = 0, which should not be processed. There will be at most 25 test cases.

Output specifications

For each test case, output the minimum time (with exactly 5 decimal digits) until the
player can extend either a horizontal or vertical ray without an atom colliding with it
while it is being drawn. The input will be constructed so that the first time this occurs
will be during an open interval at least 10−5 seconds long. If no such interval is found
during the first 10000 seconds, output “Never” (without quotes).

Sample input

3

700 420

360 290 170 44

900 150 -53 20

890 100 130 -100

4

10 10

1 1 192 144

513 385 192 144

1023 767 -192 -144

511 383 -192 -144

0

Output for sample input

2.80094

Never

NCPC 2006 Problem E: Card Trick 11

Problem E

Card Trick

The magician shuffles a small pack of cards, holds it face down
and performs the following procedure:

1. The top card is moved to the bottom of the pack. The new
top card is dealt face up onto the table. It is the Ace of
Spades.

2. Two cards are moved one at a time from the top to the
bottom. The next card is dealt face up onto the table. It is
the Two of Spades.

3. Three cards are moved one at a time . . .

4. This goes on until the nth and last card turns out to be the
n of Spades.

This impressive trick works if the magician knows how to arrange the cards
beforehand (and knows how to give a false shuffle). Your program has to determine
the initial order of the cards for a given number of cards, 1 ≤ n ≤ 13.

Input specifications

On the first line of the input is a single positive integer, telling the number of test cases
to follow. Each case consists of one line containing the integer n.

Output specifications

For each test case, output a line with the correct permutation of the values 1 to n, space
separated. The first number showing the top card of the pack, etc . . .

Sample input

2

4

5

Output for sample input

2 1 4 3

3 1 4 5 2

12 NCPC 2006 Problem E: Card Trick

NCPC 2006 Problem F: Traveling Salesman 13

Problem F

Traveling Salesman

Long before the days of international trade
treaties, a salesman would need to pay taxes at ev-
ery border crossed. So your task is to find the min-
imum number of borders that need to be crossed
when traveling between two countries. We model
the surface of Earth as a set of polygons in three di-
mensions forming a closed convex 3D shape, where
each polygon corresponds to one country. You are
not allowed to cross at points where more than two
countries meet.

Input specifications

Each test case consists of a line containing c, the number of countries (4 ≤ c ≤ 6000),
followed by c lines containing the integers n x1 y1 z1 . . . xn yn zn, describing (in order)
the n corners of a closed polygon (3 ≤ n ≤ 20). Then follows a line with one integer
m (0 < m ≤ 50), and then m lines with queries ca cb, where ca and cb are country
numbers (starting with 1). No point will be on the line between two connected points,
and −106 ≤ x, y, z ≤ 106 for all points. No two non-adjacent edges of a country share
a common point. The input is terminated by a case where c = 0, which should not be
processed.

Output specifications

For each query, output the number of borders you must cross to go from ca to cb.

Sample input

6

4 0 0 0 0 0 1 0 1 1 0 1 0

4 1 0 0 1 0 1 1 1 1 1 1 0

4 0 0 0 1 0 0 1 0 1 0 0 1

4 0 1 0 1 1 0 1 1 1 0 1 1

4 0 0 0 0 1 0 1 1 0 1 0 0

4 0 0 1 0 1 1 1 1 1 1 0 1

2

1 2

1 3

0

Output for sample input

2

1

14 NCPC 2006 Problem F: Traveling Salesman

NCPC 2006 Problem G: Whac-a-Mole 15

Problem G

Whac-a-Mole

While visiting a traveling fun fair you
suddenly have an urge to break the high
score in the Whac-a-Mole game. The goal
of the Whac-a-Mole game is to... well...
whack moles. With a hammer. To make
the job easier you have first consulted
the fortune teller and now you know the
exact appearance patterns of the moles.

The moles appear out of holes occu-
pying the n2 integer points (x, y) satisfy-
ing 0 ≤ x, y < n in a two-dimensional
coordinate system. At each time step, some moles will appear and then disappear
again before the next time step. After the moles appear but before they disappear, you
are able to move your hammer in a straight line to any position (x2, y2) that is at dis-
tance at most d from your current position (x1, y1). For simplicity, we assume that you
can only move your hammer to a point having integer coordinates. A mole is whacked
if the center of the hole it appears out of is located on the line between (x1, y1) and
(x2, y2) (including the two endpoints). Every mole whacked earns you a point. When
the game starts, before the first time step, you are able to place your hammer anywhere
you see fit.

Input specifications

The input consists of several test cases. Each test case starts with a line containing three
integers n, d and m, where n and d are as described above, and m is the total number
of moles that will appear (1 ≤ n ≤ 20, 1 ≤ d ≤ 5, and 1 ≤ m ≤ 1000). Then follow
m lines, each containing three integers x, y and t giving the position and time of the
appearance of a mole (0 ≤ x, y < n and 1 ≤ t ≤ 10). No two moles will appear at the
same place at the same time.

The input is ended with a test case where n = d = m = 0. This case should not be
processed.

Output specifications

For each test case output a single line containing a single integer, the maximum
possible score achievable.

16 NCPC 2006 Problem G: Whac-a-Mole

Sample input

4 2 6

0 0 1

3 1 3

0 1 2

0 2 2

1 0 2

2 0 2

5 4 3

0 0 1

1 2 1

2 4 1

0 0 0

Output for sample input

4

2

NCPC 2006 Problem H: Random Walking 17

Problem H

Random Walking

The Army of Coin-tossing Monkeys (ACM) is in the
business of producing randomness. Good random
numbers are important for many applications, such
as cryptography, online gambling, randomized al-
gorithms and panic attempts at solutions in the last
few seconds of programming competitions.

Recently, one of the best monkeys has had to
retire. However, before he left, he invented a new,
cheaper way to generate randomness compared to
directly using the randomness generated by coin-tossing monkeys. The method starts
by taking an undirected graph with 2n nodes labelled 0, 1, . . . , 2n − 1. To generate k
random n-bit numbers, they will let the monkeys toss n coins to decide where on the
graph to start. This node number is the first number output. The monkeys will then
pick a random edge from this node, and jump to the node that this edge connects to.
This new node will be the second random number output. They will then select a
random edge from this node (possibly back to the node they arrived from in the last
step), follow it and output the number of the node they landed on. This walk will
continue until k numbers have been output.

During experiments, the ACM has noticed that different graphs give different
output distributions, some of them not very random. So, they have asked for your
help testing the graphs to see if the randomness is of good enough quality to sell.

They consider a graph good if, for each of the n bits in each of the k numbers
generated, the probability that this bit is output as 1 is greater than 25% and smaller
than 75%.

Input specifications

The input will consist of several data sets. Each set will start with a line consisting
of three numbers k, n, e separated by single spaces, where k is the number of n-bit
numbers to be generated and e is the number of edges in the graph (1 ≤ k ≤ 100,
1 ≤ n ≤ 10 and 1 ≤ e ≤ 2000). The next e lines will consist of two space-separated
integers v1, v2 where 0 ≤ v1, v2 < 2n and v1 6= v2. Edges are undirected and each
node is guaranteed to have at least one edge. There may be multiple edges between
the same pair of nodes.

The last test case will be followed by a line with k = n = e = 0, which should not
be processed.

18 NCPC 2006 Problem H: Random Walking

Output specifications

For each input case, output a single line consisting of the word Yes if the graph is good,
and No otherwise.

Sample input

10 2 3

0 3

1 3

2 3

5 2 4

0 1

0 3

1 2

2 3

0 0 0

Output for sample input

No

Yes

NCPC 2006 Problem I: Honeycomb Walk 19

Problem I

Honeycomb Walk

A bee larva living in a hexagonal cell of a large honey-
comb decides to creep for a walk. In each “step” the larva
may move into any of the six adjacent cells and after n
steps, it is to end up in its original cell.

Your program has to compute, for a given n, the
number of different such larva walks.

Input specifications

The first line contains an integer giving the number of test cases to follow. Each case
consists of one line containing an integer n, where 1 ≤ n ≤ 14.

Output specifications

For each test case, output one line containing the number of walks. Under the
assumption 1 ≤ n ≤ 14, the answer will be less than 231.

Sample input

2

2

4

Output for sample input

6

90

