
CMU Fall Programming Contest: Round 1

September 24, 2011

• There are 8 problems. Do as many as you can in 4 hours.

• You can bring paper notes, code printouts, and books.

• You can consult these API documentation web sites:
http://download.oracle.com/javase/6/docs/api/

http://cplusplus.com/doc

• You cannot make use of any code that’s in electronic form – from the
internet, from the computer, or anywhere else – whether you wrote it
yourself or not. You cannot use websites other than those mentioned
on this page.

• The running time limit is 30 seconds, and the memory limit is 250MB.
(Please note that these limits are for the server machine. The running
time on your laptop might be faster or slower.)

• Input is from standard input, output is to standard output.

• Input files might consist of multiple test cases, read the input descrip-
tion for detials.

• The URL for the scoreboard and submitting solutions is
http://www.link.cs.cmu.edu/contest/current

The Problems
Problem Name Source (added after contest)

A What are Birds? Google Code Jam 2008 APAC-A
B An Excel-lent problem Greater NY 2004 B
C Package Delivery Topcoder SRM 363 H
D Bacteria Google Code Jam 2010 R2-C (Easy)
E Power Network SE European Regional (SEERC) 2003 G
F Minimum Rectangle Covering Richard Peng
G Play Game Topcoder SRM 217 250pt
H High Frequency Trading Danny Sleator

This contest was compiled and administered by Siyoung Oh, Richard
Peng, Danny Sleator, and Kevin Waugh. Prizes were generously funded by
IMC Financial Markets, Inc.

CMU Selection Round 1
September 24, 2011

A — What are Birds?

You are studying animals in a forest, and are trying to determine which animals are birds and which are
not.

You do this by taking two measurements of each animal – their height and their weight. For an animal
to be a bird, its height needs to be within some range, and its weight needs to be within another range, but
you’re not sure what the height and weight ranges are. You also know that every animal that satisfies these
ranges is a bird.

You have taken some of the animals you have measured and shown them to biologists, and they have
told you which are birds and which are not. This has given you some information on what the height and
weight ranges for a bird must be. For the remaining animals, your program should determine if they are
definitely birds, definitely not birds, or if you don’t know from the information you have.

Input

The first line of the input is a number between 1 and 10, which is the number of test cases. Each test case
is structured as follows:

1. One line containing an integer N (1 ≤ N ≤ 1000), the number of animals you have shown to the
biologists.

2. N lines, one for each of these animals. Each line contains three space-separated positive integers, H,
W , and X, where H is the height of the animal, W is the weight of the animal, and X is either the
string “BIRD” or “NOT BIRD”.

3. One line containing an integer M (1 ≤ M ≤ 1000), the number of animals you have not shown to the
biologists.

4. M lines, one for each of these animals. Each line contains two space separated positive integters, H
and W , where H is the height of the animal and W is the weight of the animal.

5. All heights and satisfy 1 ≤ H,W ≤ 1, 000, 000.

Output

For each of the cases your program should output:

1. One line containing the string Case #X: where X is the number of the case (starting from 1) and

2. M lines, each containing one of BIRD, NOT BIRD, or UNKNOWN.

CMU Selection Round 1
September 24, 2011

Example

Input Output

3
5
1000 1000 BIRD
2000 1000 BIRD
2000 2000 BIRD
1000 2000 BIRD
1500 2010 NOT BIRD
3
1500 1500
900 900
1400 2020
3
500 700 NOT BIRD
501 700 BIRD
502 700 NOT BIRD
2
501 600
502 501
1
100 100 NOT BIRD
3
107 93
86 70
110 115

Case #1:
BIRD
UNKNOWN
NOT BIRD
Case #2:
UNKNOWN
NOT BIRD
Case #3:
UNKNOWN
UNKNOWN
UNKNOWN

Explanation of the Example

Case 1:

The animal “1500 1500” must be within the ranges for birds, since we know that the ranges for height and
weight each include 1000 and 2000.

The animal “900 900” may or may not be a bird; we don’t know if the ranges for height and weight include
900.

The animal “1400 2020” is within the height range for birds, but if 2020 was in the weight range, then the
animal ”1500 2010”, which we know is not a bird, would also have to be within the weight range.

Case 2:

In this case we know that birds must have a height of 501. But we don’t know what the weight range for a
bird is, other than that it includes weight 700.

Case 3:

In this case, we know that anything with height 100 and weight 100 is not a bird, but we just don’t know
what birds are.

CMU Selection Round 1
September 24, 2011

B — An Excel-lent problem

A certain spreadsheet program labels the columns of a spreadsheet using letters. Column 1 is labeled as
“A”, column 2 as “B”, ..., column 26 as “Z”. When the number of columns is greater than 26, another letter
is used. For example, column 27 is “AA”, column 28 is “AB” and column 52 is “AZ”. It follows that column
53 would be “BA” and so on. Similarly, when column “ZZ” is reached, the next column would be “AAA”,
then “AAB” and so on. The rows in the spreadsheet are labeled using the row number. Rows start at 1.
The designation for a particular cell within the spreadsheet is created by combining the column label with
the row label. For example, the upper-left most cell would be “A1”. The cell at column 55 row 23 would
be “BC23”. You will write a program that converts numeric row and column values into the spreadsheet
designation.

Input

Input consists of lines of the form: RnCm. n represents the row number and m represents the column number,
1 ≤ n, m ≤ 400, 000, 000. The values n and m define a single cell on the spreadsheet. Input terminates with
the line: R0C0 (that is, n and m are 0). There will be no leading zeroes or extra spaces in the input.

Output

For each line of input (except the terminating line), you will print out the spreadsheet designation for the
specified cell as described above.

Example

Input Output

R1C1
R3C1
R1C3
R299999999C26
R52C52
R53C17576
R53C17602
R0C0

A1
A3
C1
Z299999999
AZ52
YYZ53
YZZ53

CMU Selection Round 1
September 24, 2011

C — Package Delivery

You have been assigned to deliver a number of packages from a warehouse to various destinations along
a straight line. At the beginning, all the packages are at the warehouse, which is at the left end of the line.
You and your truck are also at the warehouse. The packages must be delivered in increasing order of distance
from the warehouse. (I.e. Deliveries to destinations near the warehouse must happen before farther ones.)

Your truck has room for truckCapacity packages. Driving the truck costs fuelCost dollars per mile,
regardless of the number of packages on the truck. You may park the truck anywhere you’d like, but each
time you park somewhere other than at the warehouse, it costs parkingCost dollars. The truck must always
be parked while you deliver a package to its destination. In other words, you cannot drop packages from a
moving truck. You may never leave packages anywhere other than at their destinations, at the warehouse,
or in the truck.

You can also carry packages on foot, but you can only carry one package at a time. It costs walkCost
dollars per mile to walk while carrying a package. Walking without carrying anything costs nothing.

Input

You are given a multiple test cases and each case has following format: First line contains N (1 ≤ N ≤ 50)
representing the number of packages. Then, the next line contains N integers separated by white space
each representing the distance (in miles) of a package’s destination from the warehouse. This distance will
be between 1 and 1,000,000 inclusive. On the next line, there are four integers representing walkCost,
fuelCost, parkingCost, and truckCapacity. These costs will be between 0 and 1,000,000 inclusive and
truckCapacity is positive. The last test case will end with single integer 0.

Output

For each test case, output the minimal cost to deliver all the packages. (You do not have to return the truck
to the warehouse.)

Example

Input Output

3
1 2 3
3 2 3 3
5
1 2 3 4 5
11 5 9 2
3
5 5 5
1 1 1 3
4
1 2 2 3
1000000 1 1000 2
0

13
91
6
3009

Note that in the last case there’s a solution of cost 3007 if we allow a truckload to take two packages to
destination 2 first, then another truckload to deliver to locations 1 and 3. But this is not allowed because
the packages are not delivered in increasing order of distance.

CMU Selection Round 1
September 24, 2011

D — Bacteria

A number of bacteria lie on an infinite grid of cells, each bacterium in its own cell. Each second, the
following transformations occur (all simultaneously):

1. If a bacterium has no neighbor to its north and no neighbor to its west, then it will die.

2. If a cell has no bacterium in it, but there are bacteria in the neighboring cells to the north and to the
west, then a new bacterium will be born in that cell.

Upon examining the grid, you note that there are a positive, finite number of bacteria in one or more
rectangular regions of cells. Determine how many seconds will pass before all the bacteria die.

Here is an example of a grid that starts with 6 cells containing bacteria, and takes 6 seconds for all the
bacteria to die. ’1’s represent cells with bacteria, and ’0’s represent cells without bacteria.

Initial State
000010
011100
010000
010000
000000

1 second later
000000
001110
011000
010000
000000

2 seconds later
000000
000110
001100
011000
000000

3 seconds later
000000
000010
000110
001100
000000

4 seconds later
000000
000000
000010
000110
000000

5 seconds later
000000
000000
000000
000010
000000

6 seconds later
000000
000000
000000
000000
000000

Input

The input consists of one line containing C (1 ≤ C ≤ 100), the number of test cases. Then for each test
case:

1. One line containing R (1 ≤ R ≤ 10), the number of rectangles of cells that initially contain bacteria.

2. R lines containing four space-separated integers X1, Y1, X2Y2. These numbers are all between 1 and
100 inclusive. Also X1 ≤ X2 and Y1 ≤ Y2. This indicates that all the cells with X coordinate between
X1 and X2, inclusive, and Y coordinate between Y1 and Y2, inclusive, contain bacteria.

The rectangles may overlap. North is in the direction of decreasing Y coordinate. West is in the direction
of decreasing X coordinate.

Output

For each test case, output one line containing “Case #N : T”, where N is the case number (starting from
1), and T is the number of seconds until the bacteria all die.

Example

Input Output

1
3
5 1 5 1
2 2 4 2
2 3 2 4

Case #1: 6

CMU Selection Round 1
September 24, 2011

E — Power Network

A power network consists of nodes (power stations, consumers and dispatchers) connected by power
transport lines. A node u may be supplied with an amount s(u) ≥ 0 of power, may produce an amount
0 ≤ p(u) ≤ pmax(u) of power, may consume an amount 0 ≤ c(u) ≤ min(s(u), cmax(u)) of power, and may
deliver an amount d(u) = s(u)+p(u)−c(u) of power. The following restrictions apply: c(u) = 0 for any power
station, p(u) = 0 for any consumer, and p(u) = c(u) = 0 for any dispatcher. There is at most one power
transport line (u, v) from a node u to a node v in the net; it transports an amount 0 ≤ l(u, v) ≤ lmax(u, v) of
power delivered by u to v. Let Φ =

∑
u c(u) be the power consumed in the net. The problem is to compute

the maximum value of it.
An example is shown in the figure below. The label x/y of power station u shows that p(u) = x and

pmax(u) = y. The label x/y of consumer u shows that c(u) = x and cmax(u) = y. The label x/y of power
transport line (u, v) shows that l(u, v) = x and lmax(u, v) = y. The power consumed is Φ = 6. Notice that
there are other possible states of the network but the value of Φ cannot exceed 6.

!"#$%&'($&)*+,#)"-&'*+.&/0"*'1+2)"/)'330*/+4"*$&($+
5#6%')&($7+."3'*0'+
86$"9&)+:;7+<==>+

+
!"#$%&'()(

2"?&)+@&$?")A+
+
B*-#$+C01&D+EFB@+
2)"/)'3+!"#)6&+C01&D+EF4+")+EF422+")+EFGHIH+")+EF2H!+
+
H+-"?&)+*&$?")A+6"*(0($(+"J+*"K&(+L-"?&)+($'$0"*(7+6"*(#3&)(+'*K+K0(-'$6%&)(M+6"**&6$&K+9N+
-"?&)+$)'*(-")$+10*&(F+H+*"K&+!+3'N+9&+(#--10&K+?0$%+'*+'3"#*$+"#!$ %+"J+-"?&)7+3'N+-)"K#6&+
'*+'3"#*$+% &#!$ &'()#!$+"J+-"?&)7+3'N+6"*(#3&+'*+'3"#*$+% *#!$ '+,#"#!$-*'()#!$$+"J+
-"?&)7+'*K+3'N+K&10O&)+'*+'3"#*$+.#!$/"#!$0&#!$1*#!$+"J+-"?&)F+P%&+J"11"?0*/+)&($)06$0"*(+
'--1ND+ *#!$/%+ J")+ '*N+ -"?&)+ ($'$0"*7+ &#!$/%+ J")+ '*N+ 6"*(#3&)7+ '*K+ &#!$/*#!$/%+ J")+ '*N+
K0(-'$6%&)F+P%&)&+ 0(+'$+3"($+"*&+-"?&)+$)'*(-")$+ 10*&+#!-2$+ J)"3+'+*"K&+!+ $"+'+*"K&+2+ 0*+$%&+
&$Q+ 0$+ $)'(-")$(+ '*+ '3"#*$+ % 3#!-2$ 3'()#!-2$+ "J+ -"?&)+ K&10O&)&K+ 9N+ !+ $"+ 2F+ R&$+
45,/ ! $!#* + 9&+ $%&+ -"?&)+ 6"*(#3&K+ 0*+ $%&+ *&$F+ P%&+ -)"91&3+ 0(+ $"+ 6"3-#$&+ $%&+3'S03#3+
O'1#&+"J+45,F+
+

!6 78&96 "#!$6 &#!$6 *#!$.#!$
%6 %6 :6 %6 :6
;6

-"?&)+
($'$0"*+ <6 <6 %6 :6

=6 :6 %6 <6 <6
:6 >6 %6 ;6 :6
>6

+
6"*(#3&)+

=6 %6 =6 %6
<6 ?6 %6 %6 ?6
?6 K0(-'$6%&)+ %6 %6 %6 %6

+
C0/#)&+:F+H+-"?&)+*&$?")A+

+
H*+&S'3-1&+0(+0*+J0/#)&+:F+P%&+1'9&1+)@8+"J+-"?&)+($'$0"*+!+(%"?(+$%'$+&#!$/)+'*K+&'()#!$/8F+
P%&+ 1'9&1+)@8+ "J+ 6"*(#3&)+ !+ (%"?(+ $%'$+ *#!$/)+ '*K+ *'()#!$/8F+ P%&+ 1'9&1+)@8+ "J+ -"?&)+
$)'*(-")$+ 10*&+#!-2$+ (%"?(+ $%'$+3#!-2$/)+ '*K+3'()#!-2$/8F+ P%&+-"?&)+ 6"*(#3&K+ 0(+45,/?F+
@"$06&+$%'$+$%&)&+')&+"$%&)+-"((091&+($'$&(+"J+$%&+*&$?")A+9#$+$%&+O'1#&+"J+45,+6'**"$+&S6&&K+?F+
+
P%&)&+')&+(&O&)'1+K'$'+(&$(+ 0*+ $%&+ 0*-#$+ $&S$+ J01&F+,'6%+K'$'+(&$+&*6"K&(+'+-"?&)+*&$?")AF+ B$+
($')$(+?0$%+J"#)+0*$&/&)(D+% , ;%%6L*"K&(M7+% ,& ,6L-"?&)+($'$0"*(M7+% ,* ,6L6"*(#3&)(M7+'*K+
% ' ,<6 L-"?&)+ $)'*(-")$+ 10*&(MF+ C"11"?+ '+ K'$'+ $)0-1&$(+ #!-2$A7+ ?%&)&+ !+ '*K+ 2+ ')&+ *"K&+
0K&*$0J0&)(+ L($')$0*/+ J)"3+%M+'*K+% A ;%%%+ 0(+ $%&+O'1#&+"J+3'()#!-2$F+C"11"?+,&+K"#91&$(+#!$A7+
?%&)&+!+0(+$%&+0K&*$0J0&)+"J+'+-"?&)+($'$0"*+'*K+% A ;%%%%+0(+$%&+O'1#&+"J+&'()#!$F+P%&+K'$'+(&$+
&*K(+?0$%+,*+K"#91&$(+#!$A7+?%&)&+!+0(+$%&+0K&*$0J0&)+"J+'+6"*(#3&)+'*K+% A ;%%%%+0(+$%&+O'1#&+
"J+*'()#!$F+H11+ 0*-#$+*#39&)(+')&+ 0*$&/&)(F+,S6&-$+ $%&+#!-2$A+ $)0-1&$(+'*K+ $%&+#!$A+K"#91&$(7+
?%06%+K"+*"$+6"*$'0*+?%0$&+(-'6&(7+?%0$&+(-'6&(+6'*+"66#)+J)&&1N+0*+0*-#$F+B*-#$+K'$'+$&)30*'$&+
?0$%+'*+&*K+"J+J01&+'*K+')&+6"))&6$F+

P'91&+:F+B*-#$+'*K+"#$-#$+('3-1&(6

B*-#$+ 8#$-#$+
<6;6;6<6#%-;$<%6#;-%$;%6#%$;>6#;$<%6
B6<6=6;=6#%-%$;6#%-;$<6#%-<$>6#;-%$;6#;-<$C6#<-=$;6#<-:$B6
666666666#=->$<6#=-?$>6#:-<$B6#:-=$>6#:->$;6#?-%$>6
666666666#%$>6#;$<6#=$<6#:$;6#>$:+

;>6
?6

+
C")+ &'6%+ K'$'+ (&$+ J)"3+ $%&+ 0*-#$7+ $%&+ -)"/)'3+ -)0*$(+ "*+ $%&+ ($'*K')K+ "#$-#$+ $%&+ 3'S03#3+
'3"#*$+ "J+ -"?&)+ $%'$+ 6'*+ 9&+ 6"*(#3&K+ 0*+ $%&+ 6"))&(-"*K0*/+ *&$?")AF+ ,'6%+)&(#1$+ %'(+ '*+
0*$&/)'1+O'1#&+'*K+0(+-)0*$&K+J)"3+$%&+9&/0**0*/+"J+'+(&-')'$&+10*&F+
+
P%&+0*-#$+0*+$'91&+:+6"*$'0*(+$?"+K'$'+(&$(F+P%&+J0)($+K'$'+(&$+&*6"K&(+'+*&$?")A+?0$%+<+*"K&(7+
-"?&)+($'$0"*+%+?0$%+&'()#%$/;>+'*K+6"*(#3&)+;+?0$%+*'()#;$/<%7+'*K+<+-"?&)+$)'*(-")$+10*&(+
?0$%+3'()#%-;$/<%+'*K+3'()#;-%$/;%F+P%&+3'S03#3+O'1#&+"J+45,+ 0(+;>F+P%&+(&6"*K+K'$'+(&$+
&*6"K&(+$%&+*&$?")A+J)"3+J0/#)&+:F+

+'+'

+

%@B

>@B

<@<

<@>

%@>

;@;

:@C

=@> <@<%@;

%@;

%@>

<

=
<@<

:
;@;

>
=@:

?

;@;
;

<@<

%
:@>

Input

There are several data sets in the input text file. Each data set encodes a power network. It starts with
four integers: 0 ≤ n ≤ 100 (nodes), 0 ≤ np ≤ n (power stations), 0 ≤ nc ≤ n (consumers), and 0 ≤ m ≤ n2

(power transport lines). This is followed by m data triplets of the form (u, v)z, where u and v are node
identifiers (starting from 0) and 0 ≤ z ≤ 1000 is the value of lmax(u, v).

This is followed by np doublets (u)z, where u is the identifier of a power station and 0 ≤ z ≤ 10, 000 is
the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and
0 ≤ z ≤ 10, 000 is the value of cmax(u). All input numbers are integers, except the (u, v)z triplets and the
(u)z doublets, which do not contain white spaces. (Other than this, white spaces and newlines can occur
freely in input.) The input is terminated by end-of-file.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power
that can be consumed in the corresponding network. Each result has an integral value and is printed from
on a separate line.

Example

Input Output

2 1 1 2
(0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13
(0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1
(2,4)7 (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1
(6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

15
6

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station
0 with pmax(0) = 15 and consumer 1 with cmax(1) = 20, and 2 power transport lines with lmax(0, 1) = 20
and lmax(1, 0) = 10. The maximum value of Φ is 15. The second data set encodes the network from the
figure above.

CMU Selection Round 1
September 24, 2011

F — Minimum Rectangle Covering

Given N (1 ≤ N ≤ 100) points on the plane, find the rectangle of minimum area that covers them all.

Input

There are several data sets in the input text file. The first line of the input contains T , the number of test
cases. Each case starts with N , the number of points. This is followed by N lines each containing two space
separated integers xi, yi (−1000 ≤ xi, yi ≤ 1000).

Output

For each test case, output one number on a line by itself, the minimum area of a rectangle needed to cover
all the points. Answers within an absolute or relative error of 0.001 will be accepted as correct.

Example

Input Output

2
2
0 0
1 1
5
0 0
0 2
2 0
2 2
1 1

0
4

CMU Selection Round 1
September 24, 2011

G — Play Game

You are playing a computer game and a big fight is planned between two armies of the same size. You
and your computer opponent will line up your respective units in two rows, with each of your units facing
exactly one of your opponent’s units. Then each pair of units who face each other will fight, and the stronger
one will be victorious, while the weaker one will be captured. If two opposing units are equally strong, your
unit will lose and be captured. You know how the computer will arrange its units, and must decide how to
line up yours. You want to maximize the sum of the strengths of your units that are not captured during
the battle.

Input

There are several test cases. Each test case begins with an integer N (1 ≤ N ≤ 50) representing the number
of units you (and the computer) have. The next line contains N space-separated integers representing the
power of your units. The last line also contains N integers representing the arrangement of the computer’s
units (in the above format). Each unit has power in the range 1 to 1,000 inclusive. The input is terminated
by a line containing “0”.

Output

On the first line, you should print out the maximum total strength of your units that are not captured.
Then, on the following line, you should print out the arrangement of your units. If there are multiple
possible arrangements with the same maximum total, print any one of them. Follow the format below.

Example

Input Output

5
5 15 100 1 5
5 15 100 1 5
0

120
100 1 5 5 15

CMU Selection Round 1
September 24, 2011

H — High Frequency Trading

You have the stock price every millisecond over a period of time. At the beginning of each millisecond
you own a certain amount of stock and have a certain amount of cash on hand. You can buy some more
stock with the cash you have on hand, or you can sell some of your stock for cash. You can even do both.
Write a program that takes (1) the price at every millisecond, (2) an initial amount of cash, and, (3) a limit
on the total number of trades you can make. The program should output the log of the maximum amount
of cash you can have at the end. (The stock you have at the end, if any, is not counted.)

Input

The input consists of one or more problem instances, followed by a line containing “0”. The instance begins
with a line containing n, the number of time periods. This is followed by a line containing c, your initial
amount of cash in dollars (a positive integer, at most 1000), and t, the maximum number of trades that
you’re allowed. This is followed by n lines, each of which is the price of a share of stock (a positive integer
that is at most 1000) at the start of each millisecond. 1 ≤ n ≤ 5000, 0 ≤ t ≤ 1000.

Output

For each instance, output the the log (base 10) of the maximum amount of money that you can have at the
end. The input is engineered such that the output of a correct program will be less than 100. An absolute
error of .0001 is acceptable.

Example

Input Output

4
1 2
4
2
3
5
8
500 6
1
2
5
2
3
4
1
2
0

0.39794
4.00000

