1. **Problem 1**
 Let $L_1 \subset L_2$.
 (a) If L_1 is a regular language, then is L_2 necessarily a regular language?
 Solution:
 (b) If L_2 is a regular language, then is L_1 necessarily a regular language?
 Solution:

2. **Problem 2**
 Consider a regular language L that accepts a string if the 6th to last bit is a 1 (over an alphabet of $\{0, 1\}$).
 (a) Construct an NFA that recognizes L.
 Solution:
 (b) Argue that any DFA which recognizes L must have at least 64 states.
 Solution:

3. **Problem 3**
 Given a DFA for L, provide a formal construction for a DFA that recognizes L^*. In other words, provide the 5-tuple that characterizes $\text{Kleene}(L) = \{w_1...w_k|k \geq 0 \text{ and each } w_i \in L\}$.
 Solution:

4. **Problem 4**
 Draw a DFA that accepts the regular language represented by the regular expression
 $((01)^*)001$.
 Solution: