
15-251: Great Theoretical Ideas In Computer Science

Recitation 8 Solutions

Mathematicians in Paris

It turns out there’s a pretty strong relationship between the Chinese Remainder Theorem and Lagrange
Interpolation. The following restatements will hopefully make it clear the two are, in fact, essentially
the same.

The Chinese Remainder Theorem Let m1,m2, . . . ,mk be pairwise relatively prime positive integers
greater than 1, and let r1, r2, . . . , rk be integers. The system of congruences

x ≡ r1modm1

x ≡ r2modm2

...

x ≡ rk modmk

has a unique solution modm1m2 · · ·mk. In particular, it has a unique solution 0 ≤ x <
m1m2 · · ·mk.

The Lagrange Interpolation Theorem Let x1, x2, . . . , xk be distinct elements of a field F and let
y1, y2, . . . , yk ∈ F . The system of polynomial congruences

P (X) ≡ y1mod (X − x1)

P (X) ≡ y2mod (X − x2)

...

P (X) ≡ yk mod (X − xk)

has a unique solution mod (X − x1)(X − x2) · · · (X − xk). In particular, it has a unique solution
of degree at most k − 1.

(The Remainder Theorem, which we proved in lecture, states that the remainder of the division
of a polynomial Q(X) by X−a is equal to Q(a). Note that by this theorem, P (X) ≡ yimod (X−
xi) is exactly equivalent to P (xi) = yi.)

The Lagrange Interpolation Theorem is usually stated very differently from the above; in lecture, we
gave it as

The Lagrange Interpolation Theorem (from Lecture) Let pairs (a1, b1), (a2, b2), . . . , (ad+1, bd+1) from
a field F be given (with all ais distinct). Then there is exactly one polynomial P (X) of degree
at most d with P (ai) = bi for all i.

Can you see how the Lagrange Interpolation Theorem as covered in lecture follows from the Chinese
Remainder Theorem-esque interpretation introduced above?
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Forgot About Groups

(A, ◦) is defined as a group when the following four conditions are met:

Closure For all x, y ∈ A, x ◦ y ∈ A.

Associativity For all x, y, z ∈ A, (x ◦ y) ◦ z = x ◦ (y ◦ z).

Identity There is an e ∈ A such that for all x ∈ A, x ◦ e = e ◦ x = x.

Inverses For every x ∈ A, there is a y ∈ A such that x ◦ y = y ◦ x = e.

We define (A, ◦) as abelian (commutative) if for every x, y ∈ A, x◦y = y◦x. Danger! Commutativity
is not a group axiom. There are plenty of groups that are not commutative.

(a) Is Z+ equipped with the following function a group? If a 6= b then f(a, b) = max(a, b). Otherwise,
f(a, b) = 1.

Closure The max of two positive integers is a positive integer.

Identity e = 1.

Inverses By the f(a, b) = 1 rule, every element is its own inverse.

Associativity Consider x = y = 3, z = 2.

(3 ◦ 3) ◦ 2 = 1 ◦ 2 = 2

3 ◦ (3 ◦ 2) = 3 ◦ 3 = 1

Thus f isn’t associative.

Because its operation isn’t associative, Z+ under f is not a group.

(b) Given a group G under a binary operation ◦, a subset H of G is called a subgroup of G if H
also forms a group under the operation ◦.
Prove that if G is a group and the following hold:

(1) H ⊆ G.

(2) H is nonempty.

(3) For all x, y ∈ H, x ◦ y−1 ∈ H.

then H ≤ G (H is a subgroup of G).
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From rule (1), we know H ⊆ G, so all that’s left to show is that H is a group.

Associativity AFSOC there exists x, y, z ∈ H such that x ◦ (y ◦ z) 6= (x ◦ y) ◦ z. However, by
rule (1), x, y, z ∈ G. Because G and H have the same operation, x ◦ (y ◦ z) 6= (x ◦ y) ◦ z in
G. But since G is a group, its operation must be associative, which is a contradiction.

Identity By rule (2), H is nonempty. Consider some t ∈ H. Then by rule (3), t ◦ t−1 = 1 ∈ H.

Inverses By the proof of identity (see above), we know 1 ∈ H. Thus for all t ∈ H, e ◦ t−1 =
t−1 ∈ H by rule (3).

Closure Let s, t ∈ H. By the proof of inverses (see above), we know t−1 ∈ H. Thus by rule (3),
s ◦ (t−1)−1 = st ∈ H, so H is closed.

(c) Let G be a group with a nontrivial abelian subgroup H (i.e. H 6= {1}). Is G necessarily abelian?

No. Let G be the symmetry group of the equilateral triangle, which is the dihedral group with
six elements. Let H be the subgroup of G consisting of all rotations of the triangle and the
identity. Informally, it doesn’t matter in what order we apply rotations to the triangle, so H is
abelian. However, G is not abelian—a reflection followed by a rotation can produce a different
transformation from the same rotation followed by the same reflection.

Morph Money Morph Problems

We define a homomorphism from a group (A, ◦) to a group (B, ∗) as a function f : A→ B such that
for every x, y ∈ A, f(x ◦ y) = f(x) ∗ f(y). (A, ◦) is homomorphic to (B, ∗) if and only if there is a
homomorphism from (A, ◦) to (B, ∗).
We define an isomorphism as a bijective homomorphism. Two groups are isomorphic if there is an
isomorphism between them. Since under isomorphism we can map each element from one group to the
other and back while preserving the group operation, the two groups are essentially “the same,” just
with a different label for each element.

We define an automorphism as an isomorphism between a group and itself. Informally, it is a permuta-
tion of the group elements such that the group’s structure (its multiplication table) remains unchanged.

(a) If f is a homomorphism from a group A to a group B, and eA is the identity of A, is f(eA) the
identity of B?

Let eB be the identity of B.
Let x ∈ A.
eB ∗ f(x) = f(x) = f(eA ◦ x) = f(eA) ∗ f(x).
Multiply on the right by (f(x))−1.
eB = f(eA).

(b) If f is a homomorphism from a group A to a group B, and x ∈ A, if f(x−1) = f(x)−1?
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Let x ∈ A.
From part (a):
eB = f(eA)
Definition of inverses:
f(x) ∗ f(x)−1 = f(x ◦ x−1)
Homomorphism property:
f(x) ∗ f(x)−1 = f(x) ∗ f(x−1)
Canceling:
f(x)−1 = f(x−1)

(c) Is (Z,+) homomorphic to (Q,+)?

Yes. f(x) = x.

(d) Is (Z,+) isomorphic to (Q,+)?

No.
Assume f is an isomorphism.
Let y = f(1)/2. This gives us y + y = f(1).
Let x ∈ Z such that f(x) = y.
f(x) + f(x) = f(1).
By the homomorphism property:
f(x+ x) = f(1).
f is an inverse:
x+ x = 1.
x = 1/2, but x ∈ Z. Contradiction.

(e) Is (R,+) isomorphic to (Q,+)?

No. Different cardinalities. In fact, we will prove later in the semester that there is no bijection
between R and Q.

(f) Let A be a group. Let B be the set of automorphisms on A. Does B under functional composition
form a group?

Closure:
Consider two automorphisms f and g. The composition of f and g will be a permutation.
f(g(x ∗ x)) = f(g(x) ∗ g(x)) = f(g(x)) ∗ f(g(x)), so f ◦ g is a homomorphism. Therefore f ◦ g
is an automorphism.
Associativity: trivial.
Identity: If f(x) is the identity function, it is a permutation. f(x ∗ x) = x ∗ x = f(x) ∗ f(x), so
f is a homomorphism. The identity function is an identity.
Inverses: If f(x) is an automorphism, then f(x ∗ x) = f(x) ∗ f(x). Let y = f(x). f(f−1(y) ∗
f−1(y)) = y ∗ y. Apply f−1 to both sides: f−1(y) ∗ f−1(y) = f−1(y ∗ y).
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