15-251: Great Theoretical Ideas In Computer Science

Recitation 8

Mathematicians in Paris

It turns out there's a pretty strong relationship between the Chinese Remainder Theorem and Lagrange Interpolation. The following restatements will hopefully make it clear the two are, in fact, <u>essentially</u> the same.

The Chinese Remainder Theorem Let m_1, m_2, \ldots, m_k be pairwise relatively prime positive integers greater than 1, and let r_1, r_2, \ldots, r_k be integers. The system of congruences

```
x \equiv r_1 \mod m_1
x \equiv r_2 \mod m_2
\vdots
x \equiv r_k \mod m_k
```

has a unique solution $\mod m_1 m_2 \cdots m_k$. In particular, it has a unique solution $0 \le x < m_1 m_2 \cdots m_k$.

The Lagrange Interpolation Theorem Let x_1, x_2, \dots, x_k be distinct elements of a field F and let $y_1, y_2, \dots, y_k \in F$. The system of polynomial congruences

$$P(X) \equiv y_1 \mod (X - x_1)$$

$$P(X) \equiv y_2 \mod (X - x_2)$$

$$\vdots$$

$$P(X) \equiv y_k \mod (X - x_k)$$

has a unique solution $\operatorname{mod}(X-x_1)(X-x_2)\cdots(X-x_k)$. In particular, it has a unique solution of degree at most k-1.

(The Remainder Theorem, which we proved in lecture, states that the remainder of the division of a polynomial Q(X) by X-a is equal to Q(a). Note that by this theorem, $P(X) \equiv y_i \mod (X-x_i)$ is exactly equivalent to $P(x_i) = y_i$.)

The Lagrange Interpolation Theorem is usually stated very differently from the above; in lecture, we gave it as

The Lagrange Interpolation Theorem (from Lecture) Let pairs $(a_1,b_1),(a_2,b_2),\ldots,(a_{d+1},b_{d+1})$ from a field F be given (with all a_i s distinct). Then there is exactly one polynomial P(X) of degree at most d with $P(a_i) = b_i$ for all i.

Can you see how the Lagrange Interpolation Theorem as covered in lecture follows from the Chinese Remainder Theorem-esque interpretation introduced above?

Forgot About Groups

 (A, \circ) is defined as a **group** when the following four conditions are met:

Closure For all $x, y \in A$, $x \circ y \in A$.

Associativity For all $x, y, z \in A$, $(x \circ y) \circ z = x \circ (y \circ z)$.

Identity There is an $e \in A$ such that for all $x \in A$, $x \circ e = e \circ x = x$.

Inverses For every $x \in A$, there is a $y \in A$ such that $x \circ y = y \circ x = e$.

We define (A, \circ) as **abelian** (commutative) if for every $x, y \in A$, $x \circ y = y \circ x$. **Danger!** Commutativity is not a group axiom. There are plenty of groups that are not commutative.

- (a) Is \mathbb{Z}^+ equipped with the following function a group? If $a \neq b$ then $f(a,b) = \max(a,b)$. Otherwise, f(a,b) = 1.
- (b) Given a group G under a binary operation \circ , a subset H of G is called a **subgroup** of G if H also forms a group under the operation \circ .

Prove that if G is a group and the following hold:

- (1) $H \subseteq G$.
- (2) H is nonempty.
- (3) For all $x, y \in H$, $x \circ y^{-1} \in H$.

then $H \leq G$ (H is a subgroup of G).

(c) Let G be a group with a nontrivial abelian subgroup H (i.e. $H \neq \{1\}$). Is G necessarily abelian?

Morph Money Morph Problems

We define a **homomorphism** from a group (A, \circ) to a group (B, *) as a function $f : A \to B$ such that for every $x, y \in A$, $f(x \circ y) = f(x) * f(y)$. (A, \circ) is homomorphic to (B, *) if and only if there is a homomorphism from (A, \circ) to (B, *).

We define an **isomorphism** as a bijective homomorphism. Two groups are isomorphic if there is an isomorphism between them. Since under isomorphism we can map each element from one group to the other <u>and back</u> while preserving the group operation, the two groups are essentially "the same," just with a different label for each element.

We define an **automorphism** as an isomorphism between a group and itself. Informally, it is a permutation of the group elements such that the group's structure (its multiplication table) remains unchanged.

(a) If f is a homomorphism from a group A to a group B, and e_A is the identity of A, is $f(e_A)$ the identity of B?

- (b) If f is a homomorphism from a group A to a group B, and $x \in A$, if $f(x^{-1}) = f(x)^{-1}$?
- (c) Is $(\mathbb{Z},+)$ homomorphic to $(\mathbb{Q},+)?$
- (d) Is $(\mathbb{Z},+)$ isomorphic to $(\mathbb{Q},+)?$
- (e) Is $(\mathbb{R},+)$ isomorphic to $(\mathbb{Q},+)$?
- (f) Let A be a group. Let B be the set of automorphisms on A. Does B under functional composition form a group?