
15-251: Great Theoretical Ideas In Computer Science
Notes on Linear Algebra
Venkatesan Guruswami

October 18, 2011

Linear algebra is probably familiar in some form or other to you. It is a branch of mathematics that
is very important to a diverse set of areas in computer science. Linear algebra has been steadily
increasing in prominence in recent years, fueled by algorithmic applications dealing with massive
data sets. In these notes, we will introduce some basic concepts of the subject, and see some nice
“extraneous” uses of linear-algebraic arguments.

1 Vector space

We begin by defining one of the principal objects of study in linear algebra, namely vector spaces.

Definition 1.1 (Vector space) Let F be a field, whose elements are referred to as scalars. A vector space
over F is a nonempty set V , together with two operations: (i) addition and denoted +, which is a binary
operation on V , and (ii) scalar multiplication, denoted by · or juxtaposition, that assigns to each pair (λ, v) ∈
F× V an element λv ∈ V .The operations must satisfy the following properties:

1. (V,+) is a commutative group. (The additive identity will be denoted by 0.)

2. For all λ, µ ∈ F and v, w ∈ V ,

λ(v + w) = λv + λw

(λ+ µ)v = λv + µv

(λµ)v = λ(µv)

1v = v .

We will sometimes refer to the elements of the vector space V as vectors. The principal way in
which elements of a vector space are combined or manipulated to give other vectors is via linear
combinations. This is the “bread and butter” operation for vector spaces.

Definition 1.2 (Linear combinations) Any (finite) expression of the form

λ1v1 + λ2v2 + · · ·+ λnvn

where λi ∈ F and vi ∈ V for i = 1, 2, . . . , n, is called a linear combination of the vectors v1, v2, . . . , vn. If
at least of the λi’s is nonzero, we say the linear combination is non-trivial, otherwise it is the trivial linear
combination (which must equal the 0 vector).

Let us see some examples of vector spaces:

1. For every field F, F itself is a vector space over F.

2. The set of m-dimensional real vectors Rm under addition and scalar multiplication defined
component-wise is a vector space over R:

(a1, a2, . . . , am) + (b1, b2, . . . , bm) = (a1 + b1, a2 + b2, . . . , am + bm)

λ(a1, a2, . . . , am) = (λa1, λa2, . . . , λam)

1

3. The set Mp×q(Q) of p × q matrices with rational entries is a vector space over the field Q of
rationals, under the operations of matrix addition and scalar multiplication.

4. The set of real-valued functions on {0, 1}n, {f : f : {0, 1}n → R} is a vector space over R,
under the operation of addition and scalar multiplication of functions:

(f + g)(x) = f(x) + g(x)

(λf)(x) = λ(f(x))

This example is really the same as the second example Rm with m = 2n, dressed up differ-
ently. (Why?)

5. The set of polynomials in Zp[X] of degree at most d, under the operation of polynomial
addition (i.e, (P+Q)(X) = P (X)+Q(X)) and scalar multiplication defined as multiplication
by the corresponding constant polynomial (i.e., (λP)(X) = λ(P (X))).

6. The above are examples of finite-dimensional vectors spaces1, which are all the spaces that
will concern us here. But here is an infinite dimensional one just to give you an example: the
space `1 of real-valued sequences whose series is absolutely convergent. That is, infinite se-
quences (a1, a2, . . . , an, an+1, . . .) of real numbers such that

∑∞
i=1 |ai| converges. The vector

sum is defined componentwise

(a1, a2, . . . , an, . . .) + (b1, b2, . . . , bn, . . .) = (a1 + b1, a2 + b2, . . . , an + bn, . . .)

(why is `1 closed under the above operation?) and scalar action is also defined component-
wise

λ(a1, a2, . . . , an, . . .) = (λa1, λa2, . . . , λan, . . .) .

As with most interesting algebraic structures, vector spaces also have a natural notion of substruc-
tures.

Definition 1.3 (Subspace) A nonempty subset S ⊆ V is said to be a subspace of V if it is a vector space
under the restriction of the operations of V to S. Equivalently, S ⊆ V is a subspace if S is closed under
linear combinations, i.e.,

λ, µ ∈ F, v, w ∈ S ⇒ λv + µw ∈ S .

When a subspace S doesn’t equal the whole vector space V , we say that S is a proper subspace of V .

For example, the subset of diagonal n × n matrices is a subspace of Mn×n(Q), as is the subset of
upper-triangular matrices. Note that every subspace contains 0, and just the set {0} is a trivial
subspace. Here is a simple example of a more interesting subspace.

Exercise 1.4 Let Hn = Zn2 be the vector space of all binary n-tuples over the field Z2 = {0, 1} of two
elements. Let En be the subset of Hn consisting of strings with an even number of 1’s. Prove that En is a
subspace of Hn.

1We will define dimension of a vector space shortly.

2

2 Linear independence, span, and basis

As mentioned above, the central operation one performs in a vector space is taking linear combi-
nations. Some subsets S ⊂ V are “non-redundant” in the sense that for any vector v ∈ V , there is
at most one way to generate v as a linear combination of elements of S. The extremely important
definition which captures this property is the following.

Definition 2.1 (Linear independence) A non-empty subset S ⊂ V is said to be linearly independent
if for any v1, v2, . . . , vn ∈ S,

λ1v1 + λ2v2 + · · ·+ λnvn = 0 =⇒ λ1 = λ2 = · · · = λn = 0 .

If S is not linearly independent, then it is said to be linearly dependent.

The set of all linear combinations of vectors from S is an important concept, called span, defined
next.

Definition 2.2 (Span) The subspace spanned (or generated) by a subset S of a vector space V , denoted
span(S), is the set of all linear combinations of vectors from S:

span(S) = {λ1v1 + λ2v2 + · · ·+ λnvn | λi ∈ F, vi ∈ S} .

If span(S) = V , we say that S spans V or generates V .

It is easy to show the following from the definitions.

Exercise 2.3 Let S be a subset of a vector space V . The following statements are equivalent.

1. S is linearly independent.

2. No element of S can be expressed as a linear combination of the other elements in S.

3. Each element in span(S) has a unique expression as a linear combination of elements from S.

The most common way to represent and reason about a vector space is by choosing a basis for it.

Definition 2.4 (Basis) A subset S ⊂ V that spans V and is linearly independent is called a basis for V .

By Exercise 2.3, if S is a basis for V , every element of V has a unique expression as a linear combi-
nation of elements from S.

But why must a basis exist? It turns out that a set S is a basis precisely when either of the following
two conditions hold (the two conditions can be shown to be equivalent, so if one holds, both of
them hold):

• S is a maximal linearly independent set, i.e., S is linearly independent but every proper
superset of S is linearly dependent.

• S is a minimal spanning set, i.e., span(S) = V , but no proper subset of S spans V .

It can be shown, using Zorn’s lemma, that maximal linearly independent sets exist in any vector
space. In fact, the following important statement can be shown.

3

Theorem 2.5 (Existence of basis) Let V be a non-trivial vector space (i.e., V 6= {0}). Then,

1. V has a basis.

2. Any linearly independent subset S ⊂ V can be extended to a basis.

3. Every subset S ⊂ V that spans V contains a basis.

Here is an example of a basis. For 1 ≤ i ≤ n, define the i’th coordinate vector ei ∈ Rn to be the
vector whose i’th coordinate is 1 and the rest are 0. For example, e1 = (1, 0, 0, 0, . . . , 0). The set of
vectors

{e1, e2, . . . , en}

is a basis for Rn. It is often referred to as the standard basis.

Exercise 2.6 Can you give a basis for the vector space of polynomials in Zp[X] of degree at most d?

A vector space can (and typically does) have many different bases. For example e1, e2, . . . , en−1,1
is also a basis for Rn where 1 is the all-ones vector. Turns out that all bases, however, will have the
same size. Let us prove this very important fact for the case when there is a finite size basis.

Theorem 2.7 IfA = {a1, a2, . . . , an} is a basis for vector space V , andB = {b1, b2, . . . , bm} is a spanning
set, then m ≥ n. If further B is a basis, then m = n.

Proof: Since B spans V , a1 can be expressed as a linear combination of the {b1, b2, . . . , bm}. As
a1 6= 0 (because A is a basis), there must be an i, 1 ≤ i ≤ m, such that bi can be expressed as a
linear combination of a1, b1, . . . , bi−1. This implies that span({a1, b1, b2, . . . , bm}\{bi}) = V . Define
B1 = {a1, b1, . . . , bi−1, bi+1, . . . , bm). We have that B1 is also a spanning set of size m. Now we will
repeat this process. As A is linearly independent, for j = 2, 3, . . . , n, we can always swap in aj for
an element from the list Bj (which is not a1, a2, . . . , aj−1) to create Bj+1. After n iterations, we will
be left with a spanning set of size m that contains a1, a2, . . . , an. Thus, m ≥ n.

IfB is also a basis, then we can apply the argument with the roles ofA andB switched to conclude
n ≥ m, implying that in fact m = n. �

Definition 2.8 A vector space V is said to be finite dimensional if it is the zero space {0} or has a finite
basis. The dimension of such a V , denoted dim(V), is the size of any basis for V (if V = {0}, dim(V) = 0).

We state the following important corollary of Theorems 2.5 and 2.7.

Corollary 2.9 If V is finite dimensional, then

1. Any two bases of V have the same size.

2. If S ⊂ V is linearly independent, then |S| ≤ dim(V), with equality if and only if S is a basis for V .

Note that if S ⊂ V is a linearly independent set, then span(S) is a subspace of V of dimension |S|.
By virtue of the above, every proper subspace of a finite-dimensional vector space V has a strictly
lower dimension than V .

Corollary 2.10 Let V be a finite-dimensional vector space, and let W be a proper subspace of V . Then
dim(W) < dim(V).

4

Some comments on basis representations and basis change. Once a basis B = {b1, b2, . . . , bn}
of an n-dimensional vector space V over a field F is picked, elements of V can be represented as n-
tuples from F, with the n-tuple (λ1, λ2, . . . , λn) ∈ Fn corresponding to λ1b1 +λ2b2 + · · ·+λnbn ∈ V .
For example, the usual coordinate representation of Rn is the representation of vectors with respect
to the standard basis. Thus, all n-dimensional vector spaces V over F are “essentially” the same
as Fn — the formal statement is that V is isomorphic to Fn, though we don’t make the concept of
isomorphism precise here.

In particular, when F is finite, an n-dimensional subspace over F has exactly |F|n elements. The
following is a useful way to state Corollary 2.10 for the finite field case, which is the analog of the
fact that a proper subgroup of a finite group G has at most |G|/2 elements.

Corollary 2.11 Let V be a finite-dimensional vector space over a finite field F, and let W be a proper
subspace of V . Then |W | ≤ |V ||F| .

A different basis B′ = {b′1, b′2, . . . , b′n} for V can be expressed by n vectors in Fn, giving the coeffi-
cients in the representation of each b′i in terms of the bj ’s. The n × n matrix B′ consisting of these
vectors as columns gives a representation of basis B′ in terms of B. A vector represented as y ∈ Fn
in basis B′ has representation x = B′y with respect to basis B. An important choice of convention
choice we made here is that coefficient vectors in Fn for a vector (such as x and y) are considered
column vectors.

In other words, multiplying by B′ allows us to change from basis B′ to B. Likewise, multiplying
by B′−1 gives us a way to change representations from basis B to basis B′. This is how matrices
naturally enter linear algebra — they are an important tool in working with vector spaces when
vectors are represented in a basis dependent way.

A careful choice of basis drives several neat applications of linear algebra — a great example is the
use of the Fourier basis for Rn instead of the standard basis when n is a power of two. (The details
of this are, however, beyond our scope.)

We could take a detour here and talk about linear transformations and the related matrix algebra,
eigenvalues, eigenvectors, and what not. But let us change gears a bit now, so we can present an
elegant application of linear algebra in a seemingly alien context.

3 Oddtown clubs

Oddtown has a population of n people. People started forming numerous clubs in this town, and
in order to limit the number of clubs, the following rules were strictly imposed:

1. Each club must have an odd number of members.

2. Every pair of clubs must have an even number of members in common.

Turns out these rules do the intended job, as we will show in this section.

Theorem 3.1 Under these rules, there can be at most n clubs in Oddtown.

While this combinatorial problem does not seem to have much to do with linear algebra, we will
give a linear-algebraic proof, illustrating a simple but powerful method to use dimension argu-
ments in combinatorics. But first, we need to endow vector spaces with more structure, namely an
inner product, which is the abstraction of the familiar dot product of vectors with real coefficients.

5

Definition 3.2 (Inner product) Given a real vector space V , an inner product on V is a map from V ×V
to R, with 〈v, w〉 denoting the inner product of v and w, satisfying the following properties:

• For all v ∈ V , 〈v, v〉 ≥ 0 with equality if and only if v = 0.

• For all λ, µ ∈ F, and u, v, w ∈ V , 〈λu+ µv,w〉 = λ〈u,w〉+ µ〈v, w〉.
• For v, w ∈ V , 〈v, w〉 = 〈w, v〉.

We will refer to a vector space with an inner product defined on it as an inner product space.

We are now ready to prove the “Oddtown theorem.”

Proof: (Of Theorem 3.1) Suppose C1, C2, . . . , Cm ⊆ {1, 2, . . . , n} are m clubs such that:

• |Ci| is odd for 1 ≤ i ≤ m, and

• |Ci ∩ Cj | is even for 1 ≤ i < j ≤ m.

We need to prove that m ≤ n. Define vi = (vi,1, . . . , vi,n) ∈ {0, 1}n to be the characteristic vector of
Ci, i.e.,

vi,j =

{
1 if j ∈ Ci
0 if j /∈ Ci

Define 〈x, y〉 =
∑n

j=1 xjyj to be the usual inner product for vectors in Rn. Note that 〈vi, vi〉 = |Ci|
is odd for every i ∈ {1, 2, . . . ,m}, and 〈vi, vj〉 = |Ci ∩ Cj | is even for 1 ≤ i < j ≤ m.

Consider the vector space V = Qn over Q. We will prove that v1, v2, . . . , vm are linearly indepen-
dent vectors in V . Together with Corollary 2.9 this will immediately imply that m ≤ n, since Qn

has dimension n.

Suppose, for contradiction, that the vi’s are linearly dependent over Q, Let λ1v1 + λ2v2 + · · · +
λnvn be a nontrivial linear combination with rational coefficients λi that equals 0. By clearing
denominators, we can assume that all λi’s are in fact integers. Further we can divide out by
common factors, and assume that at least one λj is odd. Assume without loss of generality that λ1
is odd. We have

0 = 〈v1, 0〉
= 〈v1, λ1v1 + λ2v2 + · · ·+ λkvk〉

= λ1〈v1, v1〉+

k∑
j=2

λj〈v1, vj〉 .

Now,
∑k

j=2 λj〈v1, vj〉 is even as each 〈v1, vj〉, j > 1, is even. Also, λ1〈v1, v1〉 is odd as both λ1 and
〈v1, v1〉 are odd. Therefore, λ1〈v1, v1〉 +

∑k
j=2 λj〈v1, vj〉 is an odd number and thus can’t equal 0.

We have the desired contradiction. Therefore, {v1, v2, . . . , vm} is linearly independent over Q, as
desired. �

4 Error correction: A simple bound for codes

Our friends Alice and Bob are back, with Alice trying to transmit messages to Bob across an inter-
vening noisy communication channel. The channel can be used to transmit a sequence of n bits for

6

n as large as Alice and Bob choose (we will assume they are patient, so Bob can wait to receive 1010

bits before he decodes the message Alice sent). The catch is that the channel is noisy, and can flip
any subset of less than n/3 of the transmitted bits. The question is, how many distinct messages
can Alice transmit to Bob reliably (which means Bob can for sure decode the correct message that
Alice had in mind even in the wake of the errors)?

First, a warm-up: suppose the channel is more nasty than stated, and can flip up to n/2 bits. Now,
how many messages can Alice get across?

Well, the channel can always flip all 0’s to 1’s if there are at most n/2 0’s, or all 1’s to 0’s if there
are at most n/2 1’s. Thus Bob can be forced to received just the all 0’s or all 1’s string. So at best
Alice can transmit two messages reliably, regardless of how big n is! (And indeed she can send
two messages, by encoding them as the 0’s and all 1’s strings.)

Back to our problem of< n/3 flips, suppose Alice sendsmmessages, each encoded as a codeword
ci ∈ {0, 1}n of n bits, for i = 1, 2, . . . ,m. Let us begin with a key observation.

Lemma 4.1 The set of codewords C = {c1, c2, . . . , cm} enables Bob to correctly decode Alice’s message if
and only if it has the following“distance” property:

∆(ci, cj) ≥ 2n/3 for 1 ≤ i < j ≤ m ,

where for x, y ∈ {0, 1}n, ∆(x, y) denotes the Hamming distance between x and y, defined to be the number
of positions x and y differ on.

Proof: Suppose ci is the codeword sent on the channel, and Bob receives r such that ∆(r, ci) < n/3.
We note that Bob can confuse r to be the corrupted form of cj for some j 6= i if and only if we also
have ∆(r, cj) < n/3. In such a case, ∆(ci, cj) < 2n/3, contradicting the distance property of C.
Thus the distance property ensures reliable communication.

On the other hand, if ∆(ci, cj) < 2n/3, then the channel can distort ci into a point r “mid-way”
between ci and cj , and Bob upon receiving r can’t tell if Alice originally sent ci or cj . So the
distance property is also a necessary condition for reliable communication. �

So our question now becomes: suppose there are m bit vectors c1, . . . , cm such that every pair has
Hamming distance at least 2n/3. How large can m be?

We will map the problem to a linear-algebraic/geometric one, and obtain the following strong
upper bound. Note that, as with the case of n/2 flips, the upper bound is once again independent
of n — Alice can’t hope to communicate more than 4 distinct messages!

Theorem 4.2 If c1, c2, . . . , cm are n-bit vectors such that ∆(ci, cj) ≥ 2n/3 whenever i 6= j, then m ≤ 4.

Proof: We will map the codewords c1, c2, . . . , cm into vectors vi ∈ Rn, i = 1, 2, . . . ,m, such that the
angle between every pair of vectors is more than 90 degrees (i.e., their dot product 〈vi, vj〉 < 0).
We will then show that one can’t “pack” many such vectors in Rn, regardless of how large the
dimension n is.

These vectors are defined as follows:

vi =
1√
n

(
(−1)ci,1 , (−1)ci,2 , · · · , (−1)ci,n

)
,

7

where ci,j is the i’th bit of the codeword ci. It is easy to check that 〈vi, vi〉 = 1 for each i, and for
i 6= j,

〈vi, vj〉 =
1

n
(n− 2∆(ci, cj)) ≤

n− 4n/3

n
= −1

3
.

By Lemma 4.3 below, we must have m ≤ 4. �

Lemma 4.3 Let η > 0 and let v1, v2, . . . , vm be m vectors in Rn such that

• 〈vi, vi〉 = 1 for all 1 ≤ i ≤ m, and

• 〈vi, vj〉 ≤ −η for all 1 ≤ i < j ≤ m.

Then m ≤ 1 + 1
η .

Proof: We have

0 ≤ 〈
m∑
i=1

vi,
m∑
i=1

vi〉 =
m∑
i=1

〈vi, vi〉+ 2
∑

1≤i<j≤m
〈vi, vj〉 ≤ m−m(m− 1)η ,

which gives m ≤ 1 + 1/η after rearranging. �

5 Correcting a single bit flip

Since Alice would like to transmit more than one of four possible messages to Bob, they now
invest in a better communication medium. The new, much improved, communication channel,
while still noisy, never flips more than 1 out of the n bits that are transmitted. In this section, we
will use linear algebra to help Alice and Bob comunicate in the most efficient manner on such a
channel. More precisely, Alice will make a judicious choice of a code C ⊂ {0, 1}n and transmit only
codewords from C. The structure of C should ensure that Bob can decipher the original codeword
unambiguously even when one of its bits gets flipped by the channel. We would like to construct
as large a C as possible that enables this.

Well, before we go about correcting errors, let’s think about a coding scheme that will ensure that
Bob will at least be able detect the presence of an error. A simple argument (similar to Lemma 4.1)
shows that this is possible precisely when every c 6= c′ ∈ C satisfy ∆(c, c′) ≥ 2. That is, no
two codewords in C differ in exactly one bit. Here is a little exercise for you (it’s just simple
combinatorics, no linear algebra!)

Exercise 5.1 Suppose C ⊂ {0, 1}n is such that every c 6= c′ ∈ C satisfy ∆(c, c′) ≥ 2. Then |C| ≤ 2n−1.

Here is a construction that actually achieves this bound:

C0 = {(c1, c2, . . . , cn) ∈ {0, 1}n | c1 + c2 + · · ·+ cn ≡ 0 (mod 2)} . (1)

This is the parity check code — called thus because the parity of all the bits in the codeword must
be even. Or equivalently, if Alice wants to send a message m ∈ {0, 1}n−1, she appends the parity
of all the bits as the n’th bit, and sends m together with the parity bit.

Exercise 5.2 Prove that |C0| = 2n−1 and for every c 6= c′ ∈ C0, ∆(c, c′) ≥ 2. Show also that there exist
c1, c2 ∈ C0 such that ∆(c1, c2) = 2.

8

By the way, does the subset C0 sound familiar from earlier in the notes? (Hint: Exercise 1.4.) As
there exist c1, c2 ∈ C0 such that ∆(c1, c2) = 2, the code C0, however, can’t be used if Bob actually
wants to rectify the bit flip (i.e., identify the position where the bit flip occurred) rather than just
detect the presence of an error. (Why?)

To enable correcting the bit flip, we will pick a smaller subset C∗ ⊂ {0, 1}n as the code, where the
codeword bits must obey more than one parity check condition. We will assume from now on that
n is of the form n = 2t − 1.

The set C∗ will be specified by imposing parity checks on certain subsets of the n bits of the
codeword. For j = 1, 2, . . . , t, define Sj to be the subset of positive integers m, 1 ≤ m ≤ 2t − 1,
such that the j’th least significant bit in the binary representation of m equals 1. For instance, S1
is the set of odd integers in the range [1, 2t− 1]. (Question: What’s the size of each Sj?). We define
the code C∗ — which, by the way, is called the Hamming code — as follows:

C∗ = {(c1, c2, . . . , cn) ∈ {0, 1}n |
⊕
i∈Sj

ci = 0 for j = 1, 2, . . . , t} . (2)

For instance, for n = 7, the code is the following subset of {0, 1}7

C∗7 = {(c1, c2, . . . , c7) | c1 ⊕ c3 ⊕ c5 ⊕ c7 = 0; c2 ⊕ c3 ⊕ c6 ⊕ c7 = 0; c4 ⊕ c5 ⊕ c6 ⊕ c7 = 0} .

The construction has a particularly nice view in matrix form – C∗7 is the subset (c1, c2, . . . , c7) ∈ Z7
2

satisfying 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



c1
c2
...
c7

 = 0 (3)

where the matrix multiplication is performed in the field Z2. Note that the columns of the 3 × 7
matrix are all nonzero 3-bit vectors, or the binary representations of the integers in the range [1, 7].

Exercise 5.3 Prove that C∗7 is a 4-dimensional subspace of Z7
2.

Similarly to (3), the code C∗ for length n, defined in (2), is the set of (c1, c2, . . . , cn) ∈ Zn2 such that

Mt


c1
c2
...
cn

 = 0

where Mn is the t × (2t − 1) matrix whose i’th column is the binary representation of i, for i =
1, 2, . . . , 2t − 1.

Our code C∗ has the adequate distance property to be able to correct one bit flip.

Exercise 5.4 Prove that for every c 6= c′ ∈ C∗, ∆(c, c′) ≥ 3. Show also that there exist c1, c2 ∈ C∗ such
that ∆(c1, c2) = 3.

We finally turn to how Bob can locate (and therefore correct) the bit flip caused by the channel.
Suppose Alice sent c ∈ C∗, and the channel flips the `’th bit. This means that Bob receives the
string

r = c+ e`

9

where e` is the `’th coordinate vector (which has a 1 in the `’th coordinate, and 0’s elsewhere).
Bob’s goal is to find `, so he can flip back the `’th bit to recover the codeword c Alice sent.

Here’s what Bob can do. Compute Mtr ∈ Zt2. Note that

Mtr = Mt(c+ e`) = Mtc+Mte` = Mte`

where the last step uses the fact that by definition of the code C∗, Mtc = 0 when c ∈ C∗. What
is Mte`? A moment’s recollection of matrix-vector product reveals that Mte` is the `’th column of
Mt.

To conclude, Mtr is simply equal to the `’th column of Mt. But what is the `’th column of Mt?
Yes, that’s right, it is the binary representation of `. So, Bob can compute Mtr, and the answer tells
him the binary representation of the location of the bit flip. Reliable transmission against single
bit flips achieved!

Similar to Exercise 5.3, it can be shown that |C∗| has dimension n − t as a subspace of Zn2 . Thus
|C∗| = 2n−t = 2n

n+1 . That’s a whole lot of possible messages Alice can send Bob — just a factor
(n+ 1) smaller than the total number of n-bit strings. It can also be shown that this is optimal. In
summary, for n of the form 2t−1, Hamming codes give the optimal way to correct a single bit flip.

6 Checking matrix multiplication

Multiplying two n × n matrices is a basic computational problem. It is of course inhertently a
problem from the domain of linear algebra. Recall that ifA,B are two n×nmatrices, their product
C = AB is given by

Cij =

n∑
k=1

AikBkj .

How long does it take to computeC? Well, it has n2 entries, so just writing them down would take
n2 steps. The “obvious” way of computing each entry takes O(n) steps, for a total of O(n3) steps.
As you may know, there are surprising, non-trivial algorithms that can multiply n× n matrices in
time faster than n3. The first such algorithm was published by Strassen in 1969, and could multiply
matrices in time roughly nlog2 7 ≈ n2.81. Subsequently there were several improvements to the
2.81 exponent, and the current world record is due to (Coppsermith and Winograd, 1987) which
achieves time roughly n2.376 (though it is only of theoretical interest and not currently practical).

I think the most common opinion is that matrix multiplication can be done inO(n2+ε) for any pos-
itive ε, though nobody knows how to do it, and this is an outstanding open problem in algorithm
design.

Here, we won’t discuss algorithms for matrix multiplication. Rather we will discuss verification of
such algorithms.

Suppose a new startup springs up in Pittsburgh, and sells software FastMM that supposedly mul-
tiplies matrices really fast. Since we obviously don’t want wrong answers, we would like to have
a simple checking program appended to FastMM that would check whether the output C is indeed
the product of the input matrices A and B.

How can we do this? Of course we could simply multiply A and B and compare the result with
C, but this makes little sense, as we do not know how to multiply matrices as fast as FastMM.
Turns out, if we allow a small probability of error, there is a very simple and efficient checker for

10

matrix multiplication. (More broadly, the theme of probabilistic checking of computations with
significantly fewer resources than required to actually performing them has been a very influential
one in computer science, though we won’t have occasion to delve into this in this course.)

Just to be concrete, we will consider matrices with rational entries, though what we say holds
verbatim for matrices over any field. Without further ado, here is the checking algorithm. Upon
receiving three n×n matrices A,B,C with C supposedly equal to AB, the checker is a randomized
algorithm that does the following:

1. Toss a fair coin n times to pick a random n-bit string x = (x1, x2, . . . , xn) ∈ {0, 1}n, i.e., for
each i, xi is independently 0 or 1 with probability 1/2.

2. Compute y = Cx.

3. Compute z = ABx (which of course means A(Bx)).

4. If y = z, say YES, else say NO.

IfC = AB, the algorithm obviously always says YES. However, whenC 6= AB, the algorithm may
give either answer, depending on its choice of x. Below is the crucial result, which shows that the
algorithm errs with probability at most 1/2. (While a failure probability of 1/2 might seem high,
one can simply repeat the check a few times to drive down the failure probability; for instance
repeating it 50 times would reduce the probability of failure to 2−50, an extremely small quantity.)

Lemma 6.1 Suppose A,B,C are n × n matrices over Q and C 6= AB. Then for a random x ∈ {0, 1}n,
the probability that Cx = ABx is at most 1/2.

Proof: Define M = C −AB. Note that M 6= 0. Let p, q be indices such that Mpq 6= 0. Let w = Mx.
We will prove that the probability that wp, the p’th entry of w, is nonzero is at least 1/2, which
would prove the statement claimed in the lemma.

We have wp = Mp1x1 +Mp2x2 + · · ·+Mpnxn. Let us express wp as

wp = Mpqxq + s

where
s =

∑
1≤j≤n
j 6=q

Mpjxj .

Imagine we pick the bits of x according to successive tosses of a fair coin, and the toss deciding the
value of xq is made last. (Why can we make this assumption?) Just before xq is picked, the value
of s is already determined. Once xq is picked, we either leave s unchanged (if xq = 0) or add Mpq

to s (if xq = 1). Since Mpq 6= 0, we can’t have both s = 0 and s + Mpq = 0. Thus in at least one of
the two cases wp 6= 0. So wp 6= 0 with probability at least 1/2, and we are done. �

Pretty neat, huh? Here’s another exercise, which you can easily solve by the above reasoning, but
which I’d like you to solve by appealing to Corollary 2.11.

Exercise 6.2 Let F be a finite field, and M be an n× n nonzero matrix with entries from F.

1. Prove that there exists a column vector x ∈ Fn such that Mx 6= 0.

2. Prove the stronger fact that at most a 1/|F| fraction of column vectors x ∈ Fn satisfy Mx = 0.

11

