
1 

Epilogue 

Great Theoretical Ides in Computer Science 
V. Adamchik CS 15-251      Fall 2014 

    Carnegie Mellon University 

We Had Some Lectures 

1. Pancakes 
2. Inductive Reasoning 
3. Logic 
4. Proofs 
5. Counting I 
6. Counting II 
7. Generating Functions 
8. Games  
9. Probability I 
10. Probability II 
16. Random Walks 
11. Graphs I 
12. Graphs II 
13. Graphs III 
 

14. Groups 
15. Fields, Polynomials 
17. Error Correction 
18. Cryptography 
19. Finite State Automata 
20. Cantor's Legacy 
21. Turing's Legacy 
22. Gödel's Legacy 
23. Efficient Reductions 
24. P vs NP 
25. Approximation Algorithms 
26. Interactive Proofs 
27. Epilogue 

 
 
 
 
 

15-452 
15-354 
80-311 

15-451 
15-455 

21-484 

15-359 
21-325 

21-301 

21-373 

15-859 

21-441 
15-503 

21-300 
80-310 

#1. Pancakes 

Sorting by Prefix Reversal 

Pancake Number Pn 

Breaking-apart ≤ Pn  ≤ Bring-to-top 

Pancake Network 

Genome rearrangements 

#2. Induction 

Standard Form 

[P(0)  ,  k (P(k)  P(k+1) )]  n P(n)  

Strong Form 

[P(0)  ,  (P(0),P(1),…,P(k)  P(k+1))]  n P(n) 

Least Element Principal 

Structural Induction 

#3-4. Axiomatic Systems 

Given the axioms and deduction rules. 

Goal: to prove other properties, e.g. theorems. 

Consistency: we do not want a set of axioms  

to lead to contradictions. 

Soundness: every statement that’s proven is true.  

Completeness: every true statement can be proven.  

Gödel: first and second incompleteness theorems.  

#3-4. Propositional Logic 

An axiomatic system that is composed of symbols,  

logical operators (,,¬,→), 

and parenthesis. 

A formula is a propositional formula  

(aka “well-formed” formula)  

if and only if it is a ‘theorem’ in this system. 

Propositional Logic is sound and complete  



2 

#3-4. First-Order Logic 

distinguished from propositional logic by its use  

of quantifiers (, ) and logical functions. 

This logic formalizes 

Zermelo–Fraenkel Set theory 

and 

  Peano arithmetic.  

#5-6. Counting 

1. The Principle of Inclusion-Exclusion 

2. Counting by use of bijection 

3. Choice Trees 

4. The Pigeonhole Principle 

5. The Binomial Theorem 

6. Pirates and Gold 

7. Diophantine Equations 

1-n

1-kn

0x,...,x,x

kxxx

n21

n21 ...

knk
n

0k

n yx 
k

n
y)(x

#5-6. Counting 

1. Pascal’s Triangle 

 

2. Combinatorial Proofs 

 

3. Manhattan Walk 

 

4. Catalan Numbers 

RHSLHS

1-k

1-n
 n

k

n
 k

n

2n

1n

1

k

1-n

1-k

1-n

k

n

#7. Generating Functions 

Given a sequence of numbers 

a0, a1, a2, …, an, … 

The generating function for that 

sequence is a power series, 

where x is just a placeholder. 

k

0k
k x a

closed form 

2
0k

k
k xx1

x
xF8,...1,1,2,3,5,

#8. Mathematical Games 
Two players alternate moves 
Rules specify moves from one position to another 
A terminal position is one for which there are no moves 
No draws, no randomness 
The last player to move wins 

P-position (win for previous) vs N-position 

The game of Nim 

Nim-Sum: addition in base 2 without carry. 

Nimber Theorem. N(G)=0 iff P-position 

The Game of Dawson’s Kayles 

#9-10. Discrete Probability 

1. Random variable 

2. Conditional Probability 

3. Law of Total Probability 

4. Geometric and Binomial Distributions 

5. Expectation 

6. Conditional Expectation 

7. Tail bounds 

8. The Probabilistic Method 

E[X+Y]=E[X]+Y[Y] 



3 

#11-13. Graphs 

Graph Isomorphism: a vertex bijection that 
preserves adjacency and non-adjacency structures 

Cayley’s Formula: the number of labeled trees on  
n nodes is nn-2. It counts spanning trees in Kn 

Euler’s Formula for Planar Graphs: V – E + F = 2 

K5 and K3,3 are not planar 

Coloring (planar) graphs.  

Prϋfer Encoding: a bijection between trees and 
sequences. 

#11-13. Graphs 

Bipartite Matching: Hall’s theorem, Hungarian 
algorithm. 

Stable Matching on bipartite graphs Kn,n. 
Basic principle: man proposes, woman disposes 

Gale-Shapely Theorem: stable matching is always 
possible.  

Euler and Hamiltonian cycles 

#14. Groups 

4. (Inverses) a  S,  b  S s.t. a  b = b  a = e 

A group G is a pair (S, ), where S is a set and  
 is a binary operation S  S → S such that: 

2.  is associative, (a  b)  c= a  (b  c) 

3. (Identity)  e  S s.t. e  a = a  e = a, a  S  

1. (Closure ) For all a and b  S, a  b S 

(Zn, +) is a group,      {Zn, ×)\{0} is not a group 

(Zn*, ×) =  {x  Zn| gcd(x,n) =1} 

Euler Phi function (n) is a size of Zn*.  

Lagrange’s theorem: If G is a finite group, and H is a 
subgroup then the order of H divides the order of G.  

#15. Fields, Polynomials 
A field F is a set together with two binary 

operations + and ×, satisfying 

1. (F,+) is a commutative group 

2. (F\{0},×) is a commutative group 

3. The distributive law (a + b) × c = (a × c) + (b × c) 

Infinite fields: ℚ, ℝ, ℂ.   Finite fields: Fp mod prime p. 

Polynomials with coefficients from a field. Not a field itself. 

Over a field, degree-d polynomials have at most d roots. 

Lagrange interpolation: restores a unique polynomial 
of degree at most d from d+1 points. 

Vandermonde matrix 

#16. Markov Chain 

M =  
  .4   .6    0 

  .3   .1   .6 

  .5    0   .5 

W C F 

W 

C 

F 

Transition matrix 

Starting at state X at what state will I be after N steps? 

In this system, the next state depends only on my status 

at previous state. 

Stationary (invariant) distribution: π = π M  

Application: random walk on undirected graphs. 

#17. Error Correction 
Sending a message via noisy channel. The channel may 

corrupt up to k symbols. How to correct errors? 

Reed–Solomon encoding: we represent (d+1) input symbols as 

the coefficients of a degree d polynomial P(x), and send 

values P(1), P(2), …, P(d+k+1). If there are up to k erasures, 

we can restore that polynomial via Lagrange interpolation. 

In general case we do not know where the errors are. 

We send d+2k+1 values, and find the error locator 

polynomial by solving a linear system of equations. 



4 

#18. Cryptography 
Diffie-Hellman Key Exchange, it requires both parties to 

exchange information to share a secret. 

RSA: based on public and private keys. 

Pick secret, random large primes: p,q  
Multiply n = p*q, “Publish”: n 
(n) = (p-1)*(q-1) 

Pick random e  Z*
(n),“Publish”: e 

Compute d = inverse of e in Z*
(n) 

Hence, e*d = 1 [ mod (n) ] 
“Private Key”: d Encode: m=inpute(mod n) 

Decode: md(mod n) 

#19. Finite Automata 
Q  = {q0, q1, q2, q3} 

Σ = {0,1} 

 : Q  Σ → Q transition function 

q0  Q is start state 

F  = {q1, q2}  Q accept states 

A language L ⊆ Σ is regular if there is  a DFA which decides it. 

Theorem:  L = {0n1n : n∈ℕ} is not regular 

q2  

0 
0,1 

0 0 

1 

1 

1 

q0 

q1 

q3 

M 

An axiomatic system for regular languages, the Kleene theorem  

Theorem (Rabin, Scott).  

        For every NFA there is an equivalent DFA. 

#20. Cantor's Legacy 

Sets A and B have the same ‘cardinality’ (size), written  
|A| = |B|, iff there exists a bijection between them. 

N and ℚ have the same cardinality, |ℕ| =|ℚ| = ℵ0  

ℝ is uncountable, diagonalization argument. 

Continuum Hypothesis:  
there is NO a set S with  |ℕ| < S < |ℝ| 

Cantor Theorem: There is no a bijection from S onto its  
power set P(S), and |S| < |P(S)|. 

The cardinal numbers  ℵ0 < ℵ1 < ℵ2 < … 

Cantor Sets – tiny measure zero sets. 

#21. Turing's Legacy 
Describes a new model of computation 

Turing Machine is a 7-tuple  M =(Q, Σ, Γ, δ, q0, qaccept, qreject) 

A language L ⊆ Σ* is decidable if there is  

     a Turing Machine which: 

1.  Halts on every input  x∈ Σ*. 

2.  Accepts inputs x∈L and rejects inputs x∉L.  

Church–Turing Thesis: Any natural / reasonable notion of 

computation can be simulated by a TM. 

Turing theorem: There is no program to solve  
the halting problem 

#22. Gödel's Legacy 

Gödel’s Completeness Theorem: there is a (computable)  

axiomatic system, so a TM can “check” if a proof is a correct  

Examples: Peano arithmetic (PA).  

Intuition, Turing’s halting problem suggests that there are 

true statements that cannot be proven in PA.   

First Incompleteness Theorem: any mathematical proof 

system  which has computable axioms cannot be both 

complete and sound. 

Second Incompleteness Theorem: any mathematical proof 

system  which has computable axioms cannot be both 

complete and consistent. 

#23-24. P vs. NP 
P : a set of all languages L s.t.  a polynomial time  

algorithm that decides on L 

NP : a set of all languages L s.t.  a polynomial time  

algorithm that verify xL. 

Mapping reduction A ≤p B :  

1. f is a polynomial time computable  

2. x∈A if and only if f(x)∈B. 

NP-hard = { L  {0, 1}*  X  NP and X ≤p L} 

NP-complete iff 
1)  L  NP 
2) L  NP-hard 

Cook-Levin Theorem:   
SAT is NP-complete 



5 

#23-24. P vs. NP 

NP 

P 

NP-complete 

NP-hard 

#23-24. P vs. NP 

A recipe for proving any L  NP-complete: 

1) Prove L  NP 

2) Choose A  NPC and reduce it to L 

2.1) Describe mapping f:A -> L 

2.2) Prove x  A iff f(x)  L  

2.3) Prove f is polynomial 

All of these problems poly-reduce to one another! 

#25. Approximation Algorithms 

Suppose we are given an NP-complete problem to solve. 
Can we develop polynomial-time algorithms that always 
produce a “good enough" solution? 

Let P be a minimization problem, and I be an instance of P. 
Let ALG(I) be a solution returned by an algorithm, and let 
OPT(I) be an optimal solution. Then ALG(I) is said to be a  
c-approximation algorithm, if for I, ALG(I) ≤ c ∙ OPT(I). 

Examples: Vertex Cover, Metric TSP. 

Problems can be categorized to the best accuracy achieved 
by an approximation algorithm. 

For some optimization problems, the approximation 
algorithms are unlikely to be possible. It is NP-hard to 
approximate them. 

Faculty Course Evaluations 

http://cmu.onlinecourseevaluations.com 

Please fill one in!! 

Final Exam 

Sun., December 14   

1:00pm ‐ 4:00pm 

GHC 4401 & GHC 4307 

Format: 

10 short questions, 4 pts each 

6 long questions, 10 pts each 

We allow a cheat sheet, both sides, any font size. 

Review: Fri, Dec. 12. Time/room will be posted 

later. Practice Exam will be posted. 


