
1 

Approximation Algorithms 

P  NP 

Great Theoretical Ideas In Computer Science 

Victor Adamchik CS 15-251 

Carnegie Mellon University 

Plan: 
 
 Vertex Cover 
 Metric TSP 
 3SAT 
 

Computational hardness 

Suppose we are given an NP-complete problem  

to solve. 

 

Can we develop polynomial-time algorithms that  

always produce a “good enough" solution? 

Vertex cover 

Given G=(V,E), find the smallest  

SV s.t. every edge is incident on  

a vertex in S. 

 

NP-compete problem. 

Vertex cover 

Lemma. Let M be a matching in G,  

and S be a vertex cover,  

then |S| ≥ |M|. 

 

Proof.  

S must cover at least one vertex  

for each edge in M. 

Vertex cover 

Def. A matching M is maximal if there 
is no matching M’ such that M  M’. 

 

Which of the following algos. would 
find a maximal matching: 

a) Greedily add edges that are 
disjoint from the edges added so 
far, while such edges exist 

b) Compute a maximum matching 

c) Both 

d) Neither 



2 

Approximation Vertex Cover 

Approx-VC(G): 

M  maximal matching on G 

S  take both endpoints of edges in M 

Return S  

Theorem. Let OPT(G) be the size of the  

optimal vertex cover and S = Approx-VC(G).  

Then  |S| ≤ 2∙ OPT(G) 

Proof.   |S| = 2 |M| ≤ 2 ∙ OPT(G) 

  Approximation Vertex Cover 

Theorem. Let OPT(G) be the size of the 
optimal vertex cover and S = Approx-
VC(G). Then  |S| ≤ 2∙ OPT(G) 

Fact. Nobody knows any algorithm with 
approximation ratio 1.9 

Can we do better than 2 ?? 

  Approximation Vertex Cover 

Is 2 a tight bound for this algorithm?  

Consider a complete bipartite graph Kn,n 

What is the size of the optimal 
solution OPT(Kn,n) ? 

What is the size of any maximal 
matching M(Kn,n) ? n 

n 

Approx-VC(Kn,n)  = 2n 

These notions allow us to 
circumvent NP-hardness by 

designing polynomial-time algos 
with formal worst-case 

guarantees! 

Formal Definition 

Let P be a minimization problem, and I be an 
instance of P. Let ALG(I) be a solution returned by 
an algorithm, and let OPT(I) be an optimal solution. 

Then ALG(I) is said to be a c-approximation 
algorithm, if for I, ALG(I) ≤ c ∙ OPT(I). 

Traveling Salesman Problem 
Given a complete undirected  graph G=(V,E) 
with edge cost c:ER+, find a min cost 
Hamiltonian cycle (HC). 

Claim: TSP is NP-hard. 

Proof by reduction from a HC which is NP-Complete. 

Given the input G=(V,E) to HC, we modify it to  

construct a complete graph G’=(V’, E’) and cost  

function as follows: 

 c(u,v) = 0, if edge (u,v)  E 

 c(u,v) = 1, otherwise. 

G has a HC iff |TSP(G’)| = 0 

Metric TSP 

c(u, v) ≥ 0,  c(v, v) = 0 

c(u, v) = c(v, u), 

c(u, v) ≤ c(u, w) + c(w, v) 

Claim: Metric TSP is NP-hard. 

We construct a new graph with an edge between 
every pair of nodes with length equal to the length 
of the shortest path between them. The shortest 
path forms a metric:  

We are allowed to visit vertices multiple times. 



3 

Traveling salesman problem 

The largest solved  TSP (as of 2013), an 85,900-vertex 
route calculated in 2006. The graph corresponds to the 
design of a customized computer chip created at Bell 
Laboratories, and the solution exhibits the shortest path 
for a laser to follow as it sculpts the chip. 

Approximation Algorithm 

8 

7 
 6 

3 

5 

4 

1 10 

7 

2 

Approx-TSP(G): 

1) Find a MST of G 

2) Complete an Euler tour by doubling edges 

3) Remove multiply visited edges (shortcuts) 

Approximation Metric-TSP 

Theorem. Approx-TSP is a 2-approximation 
algorithm for a metric TSP. 

Proof.  

|Approx-TSP| ≤ |Euler Tour| = 2∙|MST| ≤ 2∙|OPT|   

shortcutting 
decreases the cost. 

doubling edges 

we can get a spanning 
tree from HC by 
removing edges 

Christofides Algorithm 

Observe that a factor 2 in the approximation ratio 
is due to doubling edges; we did this in order to 
obtain an Eulerian tour.  

But any graph with even degrees vertices has an 
Eulerian tour.  

Thus we have to add edges only between odd 
degree vertices 

Christofides Algorithm 

8 

7 
 6 

3 

5 

4 

1 10 

7 

2 

7 

2 

15 

9 
11 

13 

 6 

3 4 

1 

2 

15 

2 

7 

Approx-C(G): 

T  MST of G 

S  vertices of odd degree in T 

M  min-cost matching on S  

Return:  Euler Tour T  M  

Christofides Algorithm 

* Not for the exam 

Theorem.  

Christofides is 3/2 approximation for Metric TSP 

We know that c(T) ≤ OPT.  

 

It remains to show c(M) ≤ ½ OPT.  

Proof. ALG = c(M) + c(T) 

The algo has been known for over 30 years and 
yet no improvements have been made since its 
discovery. 



4 

Christofides Algorithm 

* Not for the exam 

Lemma. c(M) ≤ ½ OPT  

 

Proof. Consider two feasible 
matching: M1 and M2. 

Note, |S| is even. Thus, 

2 

15 

9 
11 

13 

7 

M1 

M1 

M2 

M2 

c(M) ≤ ½ (c(M1) + c(M2))  

Since c(M1) + c(M2) ≤ OPT  

It follows, c(M) ≤ ½ OPT  

Traveling Salesman Problem 

Theorem: If PNP, then for c>1 there is NO  
a poly-time c-approximation of general TSP. 

Proof. To show Ham-cycle ≤p c-approx TSP. 

Start with G and create a new complete graph G’ with the 
cost function 

 c(u,v) = 1, if (u,v)E 

 c(u,v) = c ∙ n, otherwise (where n = |V|) 

If G has HC , then |TSP(G’)| = n. 

If G has no HC , then |TSP(G’)| ≥ (n-1) + c ∙ n ≥ c ∙ n 

Since the |TSP| differs by a factor c, our approx. algorithm 
can be able to distinguish between two cases, thus decide if 
G has a ham-cycle. 

MAX-SAT 

Given a CNF formula (like in SAT), try 
to maximize the number of 

clauses satisfied. 

 

CNF  is a conjunction of clauses, where 
each clause is a disjunction of literals 
(X1  X2  …  Xk). 

 

Famous NP-complete problem. 

Exactly-3-SAT Approximation 

Theorem. If every clause has size exactly 3, then 
there is a simple randomized algorithm that can 
satisfy at least a 7/8 fraction of clauses.  

Proof. Try a random assignment to the variables.  

Since there is only one out of 8 combinations 
that can make it false, the probability of the clause 
being false is 1/8. 

Pr[clause is false] = ? 

Exactly-3-SAT Approximation 

Theorem. If every clause has size exactly 3, then 
there is a simple randomized algorithm that can 
satisfy at least a 7/8 fraction of clauses.  

Proof. (cont) 

So if there are m clauses total, the expected 
number satisfied is (7/8) m. 

If the assignment satisfies less, just repeat. 

With high probability it won't take too many tries 
before you do at least as well as the expectation. 

Exactly-3-SAT Approximation 

With high probability it won't take too many tries before 
you do at least as well as the expectation. 

Proof. (cont) 

Let Z be the random variable denoting the number of clauses 
satisfied by a random assignment. 

Let pk = Pr[Z = k] 

mk0
kp k

mk7/8m
k

7/8mk0
k p kp k

m pp m
mk7/8m

k

7/8mk0
k8

1
8
7 p -m )(

m p 1)-m( 8
1

8
7

It follows,  
m 8

1
p

p is the probability that a random 
assignment satisfies at least 7/8m 
clauses. 

m
8

7
E[Z]



5 

Exactly-3-SAT Approximation 

Theorem. If every clause has size exactly 3, then 
there is a simple randomized algorithm that can 
satisfy at least a 7/8 fraction of clauses.  

Theorem (Hastad, 1997).  

If there is an c-approximation with c >7/8,  

then P = NP. 

Approximation Algorithms  
for: 
 Vertex Cover 
 Metric TSP 
 3SAT 

Here’s What You 
Need to Know… 


