
1

15-251: Great Theoretical Ideas in Computer Science

P vs. NP

Lecture 24

November 20, 2014

$1,000,000

— the prize for solving any

of the Millennium Prize Problems

Millennium Prize Problems

1. Birch and Swinnerton-Dyer Conjecture

2. Hodge Conjecture

3. Existence & smoothness for Navier–Stokes

4. Poincaré Conjecture

5. P vs. NP

6. Riemann Hypothesis

7. Yang–Mills existence and mass gap

Suppose that you are organizing housing accommodations for a group of four

hundred university students. Space is limited and only one hundred of the

students will receive places in the dormitory. To complicate matters, the Dean

has provided you with a list of pairs of incompatible students, and requested

that no pair from this list appear in your final choice. This is an example of

what computer scientists call an NP-problem, since it is easy to check if a

given choice of one hundred students proposed by a coworker is satisfactory

(i.e., no pair taken from your coworker's list also appears on the list from the

Dean's office), however the task of generating such a list from scratch seems

to be so hard as to be completely impractical. Indeed, the total number of

ways of choosing one hundred students from the four hundred applicants is

greater than the number of atoms in the known universe! Thus no future

civilization could ever hope to build a supercomputer capable of solving the

problem by brute force; that is, by checking every possible combination of 100

students. However, this apparent difficulty may only reflect the lack of

ingenuity of your programmer. In fact, one of the outstanding problems in

computer science is determining whether questions exist whose answer can

be quickly checked, but which require an impossibly long time to solve by any

direct procedure. Problems like the one listed above certainly seem to be of

this kind, but so far no one has managed to prove that any of them really are

so hard as they appear, i.e., that there really is no feasible way to generate an

answer with the help of a computer. Stephen Cook and Leonid Levin

formulated the P (i.e., easy to find) versus NP (i.e., easy to check) problem

independently in 1971.

www.claymath.org/millennium/P_vs_NP/

If one of them is solved

in the next few years, it‘ll

probably be P vs. NP.

If, in the year 3000, exactly

one of them is unsolved,

it‘ll unquestionably be P vs. NP.

Why did Lovász say that?

Keith Devlin in his book

 “The Millennium Problems: The Seven Greatest

Unsolved Mathematical Puzzles of Our Time”

Millennium Prize Problems

1. Birch and Swinnerton-Dyer Conjecture

2. Hodge Conjecture

3. Existence & smoothness for Navier–Stokes

4. Poincaré Conjecture

5. P vs. NP

6. Riemann Hypothesis

7. Yang–Mills existence and mass gap

The only one with

philosophical &

metamathematical

implications.

http://www.claymath.org/millennium/P_vs_NP/

2

Millennium Prize Problems

1. Birch and Swinnerton-Dyer Conjecture

2. Hodge Conjecture

3. Existence & smoothness for Navier–Stokes

4. Poincaré Conjecture

5. P vs. NP

6. Riemann Hypothesis

7. Yang–Mills existence and mass gap

Solved in 2003

by Grisha Perelman.

What is the P vs. NP problem?

Sudoku Sudoku 3×3 × 3×3

Sudoku 4×4 × 4×4 Sudoku 4×4 × 4×4

3

No-Promises Sudoku

5

This one has no solution.

4×4 × 4×4 No-Promises Sudoku

5

This one has multiple solutions.

4×4 × 4×4

No-Promises Sudoku n×n × n×n

Given a partially filled n×n×n×n Sudoku grid,

output YES or NO: can it be validly completed?

Naive decision algorithm:

 For each empty cell (≤ n4), try each possible digit.

 Check if that‘s a valid solution. Overall time ≈ nn4
.

Smart decision algorithm: ???

Verifying a proposed solution: Time O(n4).

No-Promises Sudoku n×n × n×n

Naive decision algorithm: Time ≈ nn4
.

Verifying a proposed solution: Time O(n4).

For n = 100 (meaning 10,000 100 x 100 grids):

Verifying a solution: ≈ 100M steps.

Your cell phone can do this in 1 second.

Naive algorithm: a number with ≈ 200M digits.

Insanely larger than # of quarks in the universe.

No-Promises Sudoku n×n × n×n

Question:

 Is there a fixed constant c and an algorithm A

 such that A solves the decision problem in

 time O(nc)?

This is equivalent to

the P vs. NP problem!

Is this famous $1,000,000 problem

really about Sudoku?? Yes and no.

Here‘s how P vs. NP is usually (informally) stated:

Let L be an algorithmic task.

Suppose there is an efficient algorithm

for verifying solutions to L.

Is there always also an efficient algorithm

for finding solutions to L?

―L∈NP‖

―L∈P‖

4

Isn‘t Sudoku just one particular instance

of this question?

Let L be an algorithmic task.

Suppose there is an efficient algorithm

for verifying solutions to L.

Is there always also an efficient algorithm

for finding solutions to L?

―L∈NP‖

―L∈P‖

We‘ll see: It‘s true for all problems

 if and only if it is true for Sudoku!
Let‘s develop these notions formally…

We‘ll start by describing some

sample algorithmic problems.

3-Coloring

Input: A graph

Task: Decide if there is a 3-coloring.

 If so, find one.

Circuit-Sat

Input: A boolean circuit C

Task: Decide if there is a 0/1

 setting to the input

 wires which ―satisfies‖ C

 (makes output wire 1).

 If so, find such a setting.

AND OR

NOT
AND

OR

x1 x2 x3

1 0 0

Hamiltonian Cycle

Input: A graph

Task: Decide if there is a Hamiltonian Cycle

 in it, meaning a cycle that visits each

 vertex exactly once. If so, find one.

Bipartite Perfect Matching

Input: A bipartite graph

Task: Decide if there is a perfect matching.

 If so, find one.

5

Input: A partially filled

 n2×n2 Sudoku grid

Task: Decide if there is a valid Sudoko

 completion. If so, find one.

(No-Promises) Sudoku n×n × n×n Decision vs. Search

Each of these problems was of the form,

 ―Does a solution exist? If so, find one.‖

Decision problem Search problem

For simplicity, we focus on decision problems.

(Given a decision algorithm, it‘s usually

easy to use it to solve the search problem.

We saw this for 3-coloring in last lecture)

Reducing search to decision

AND OR

NOT
AND

OR

x1 x2 x3

Example: Circuit-Sat

Suppose you have a good

decision alg. for Circuit-Sat.

How can you get a good alg.

for solving the search problem?

Hint:

 Try fixing x1 to 0, fixing x1 to 1,

 and running the decision alg. in both cases.

Decision problems as languages

Given G, does it have

a Hamiltonian cycle?

Given bipartite G, does

it have a perfect matching?

Given circuit C, does it have

a ―satisfying‖ input string?

Given graph G, is it

3-colorable?

Given partially filled Sudoku

grid S, can it be completed?

Decision problems Languages in {0,1}*

HAM-CYCLE = {⟨G⟩ : G contains a

Hamiltonian cycle}

PMATCH = {⟨G⟩ : G is bipartite,

has perfect matching}

CIRCUIT-SAT = {⟨C⟩ : C has a

satisfying input}

3-COL = {⟨G⟩ : G is 3-colorable}

SUDOKU = {⟨S⟩ : S can be validly

completed}

Given TM M and input x,

does M(x) halt?
HALTS = {⟨M,x⟩ : M(x) halts}

Decision problems as languages

Languages in {0,1}*

PMATCH = {⟨G⟩ : G is bipartite,

has perfect matching}

CIRCUIT-SAT = {⟨C⟩ : C has a

satisfying input}

3-COL = {⟨G⟩ : G is 3-colorable}

SUDOKU = {⟨S⟩ : S can be validly

completed}

HALTS = {⟨M,x⟩ : M(x) halts}

No Turing Machine

(or Java algorithm)

can decide this one.

Is there a TM

(or Java algorithm)

which decides

the others?

Of course!

HAM-CYCLE = {⟨G⟩ : G contains a

Hamiltonian cycle}

Efficiency

 HAM, PMATCH, CIRCUIT-SAT, 3-COL, SUDOKU

 can all be decided by ―trying all possibilities.‖

 E.g., there is a naive algorithm for deciding

 3-COL which runs in ≈ 3
|V|

 time.

 We care about more than just

 ―Is there an algorithm?‖

 We care about

 ―Is there a reasonably ‗efficient‘ algorithm?‖

6

What is ‗efficient‘?

Is your algorithm for deciding L ‘efficient’ if

on input strings of length n it runs in time…

O(n) ?

O(n log n) ?

O(n2) ?

O(n6) ?

O(nlog n) ?

O(2n) ?

O(n!) ?

Sure (unless the constant is huge…)

Sure.

Kind of efficient.

Barely…

Not really…

No.

Please. Internet ≈ 22! bytes.

What is ‗efficient‘?

Is your algorithm for deciding L ‘efficient’ if

on input strings of length n it runs in time…

O(n) ?

O(n log n) ?

O(n2) ?

O(n6) ?

O(nlog n) ?

O(2n) ?

O(n!) ?

Not efficient

Polynomial time:

 O(nc) for some fixed c.

Arguably efficient

Polynomial time

Polynomial time is the standard ‗theoretical‘

definition of ‗efficient‘.

It is a very ―low bar‖ for efficiency:

if it‘s not poly-time, it‘s really not efficient.

Yes, yes, yes, an algorithm running in

time O(n100) is not actually efficient in practice.

It‘s a low bar: a polynomial time solution is a

necessary first step towards a truly efficient one.

Polynomial time

50 years of computer science experience

 shows it‘s a very compelling definition:

• It‘s independent of the ―machine model‖:

 poly-time on a TM = poly-time on a RAM

= poly-time in Java = poly-time in Python

• It‘s ―robust‖: plug a poly-time subroutine

into a poly-time algorithm: still poly-time.

• Empirically, it seems that most natural

problems with poly-time algorithms also

have efficient-in-practice algorithms.

Polynomial time

P

The set of all languages L such that

 there is a constant c

 and an algorithm (TM) A

 such that A decides L and

 A runs in time O(|x|c) on all inputs x.

=

Examples

CONN = {⟨G⟩ : G is a connected graph} ∈ P.

Why?

Given graph G with n nodes, can correctly decide

connectivity by doing breadth-first-search, counting

the number of nodes seen, checking if the count equals n.

Running time is O(|V| + |E|) = O(n2) in most reasonable

models (maybe O(n4) on a poor Turing Machine).

(Input size |⟨G⟩| is ≥ n for most reasonable encodings.)

7

Examples

CONN = {⟨G⟩ : G is a connected graph} ∈ P.

PMATCH = {⟨G⟩ : G is a bipartite graph with

 a perfect matching} ∈ P.

Why?

We described an O(n3) time algorithm

 in Lecture 12 (Graphs II).

Examples

CONN = {⟨G⟩ : G is a connected graph} ∈ P.

PMATCH = {⟨G⟩ : G is bip., has perf. matching}

 ∈ P.

2-COL ∈ P.

3-COL: Probably not in P, but no one knows.

CIRCUIT-SAT, HAM-CYCLE, SUDOKU:

 also unknown if they are in P.

Examples

Let SAME-REG = { ⟨R1, R2⟩ :

 R1, R2 are reg. exprs.

 using ⋃,⋅, squaring,

 such that L(R1) = L(R2) }

⟨ a(a⋃b)2, aaa⋃aab⋃aba⋃abb ⟩ ∈ SAME-REG

⟨ a2(a⋃b), aaa⋃abb ⟩ ∉ SAME-REG

Theorem (Meyer–Stockmeyer 1972):

SAME-REG ∉ P

So we understand P.

Great, we‘re halfway there!

Now what is NP?

Verifying solutions

SUDOKU: Filling in the grid may be tough,

 but if someone gives you a solution,

 verifying it is easy (poly-time).

3-COL, CIRCUIT-SAT, HAM-CYCLE:

 similarly easy to verify solutions.

PMATCH: similarly easy to verify a solution.

NP: poly-time verifiability

 Informally, NP is the set of all languages L

 such that there is a poly-time algorithm V

 which can verify that x ∈ L if it is (magically)

 given a valid certificate (aka proof, witness) that x ∈ L.

Remark: The ‗N‘ in NP stands for ‗nondeterministic‘.

 It does not stand for not !!

Reason for terminology is that NP can also be defined

as languages decided by a

―nondeterministic‖ version of poly-time TMs (similar to NFAs)

8

NP: formal definition

Let L be a language. We say L∈NP iff…

There are constants c, d and an algorithm V

 called the ―verifier‖ such that:

V takes two inputs, x and y, where |y| ≤ O(|x|c).

x is called the ―real input‖; y is called the ―certificate‖.

V(x,y) runs in time O((|x|+|y|)d).

 ∀x∈L, ∃y such that V(x,y) outputs YES,

 ∀x∉L, ∀y, V(x,y) outputs NO.

Examples

SUDOKU ∈ NP. Why?

The verifying algorithm V takes as input:

 x: a partially filled n2×n2 Sudoku grid;

 y: supposed to be a valid completion of x.

Note that the ―certificate‖ y satisfies |y| ≤ O(|x|).

Now V just checks two things:

• on all non-blank cells in x, same value appears in y;

• y is a valid Sudoku solution.

V runs in polynomial time: in fact, O(|x|+|y|) time.

Examples

SUDOKU ∈ NP. Why?

The verifying algorithm V takes as input:

 x: a partially filled n2×n2 Sudoku grid;

 y: supposed to be a valid completion of x.

For all x∈SUDOKU, there must be a valid completion y.

If magically given this y, V(x,y) will output YES.

For all x∉SUDOKU, there is no valid completion y.

So whatever y is given, V(x,y) will output NO.

Examples

3-COL ∈ NP. Why?

Briefly:

 The verifying algorithm takes graph x

 and expects y to be a valid 3-coloring.

 In polynomial time, can check that y

 is indeed a valid 3-coloring of x.

REMINDER: Verifier V does not need to

 find the certificate.

Examples

HAM-CYCLE, CIRCUIT-SAT ∈ NP. (Why?)

Is = {⟨G⟩ : G is NOT 3-colorable} in NP?

Informally, is there an easy-to-check

certificate that a graph is NOT 3-colorable?

Probably not, but no one knows.

not known if in NP.

Examples

PMATCH ∈ NP.

One reason:

 Verifying a given perfect matching is easy.

Another reason:

 Because PMATCH ∈ P!

Fact: P ⊆ NP.

9

P ⊆ NP
Proof:

 Suppose L∈P.

 Let A be a poly-time alg. which decides L.

 Let V be the following verifier algorithm:

 V takes as input:

 real input x, ―certificate‖ y of length 0.

 V(x,y) just runs A(x) and gives its output.

―Verifier doesn‘t need a certificate:

it can check membership in L itself.‖

Proofs that a language is NP are

almost quite easy. But…

Let = {⟨G⟩ : G is bipartite, does NOT

 have a perfect matching }.

Is in NP?

Yes! Clearly ∈ P because PMATCH ∈ P.

(Just run the PMATCH algorithm, reverse the answer.)

∴ ∈ NP because P ⊆ NP.

The P vs. NP problem

We know that P ⊆ NP.

Does P = NP?

If P = NP then there is an efficient

(polynomial-time) algorithm for

SUDOKU, 3-COL, CIRCUIT-SAT, HAM-CYCLE, …

That would be awesome!!

The P vs. NP problem

We know that P ⊆ NP.

Does P = NP?

If P ≠ NP then…

There is some particular L∈NP which is not in P.

Doesn‘t sound like a big deal.

Maybe it‘s just some uninteresting, obscure L.

Cook–Levin Theorem

P = NP if and only if 3-SAT ∈ P

In particular, if P ≠ NP

then 3-SAT ∉ P.

―3-SAT is the

hardest problem in NP‖

The hardest problem(s) in NP

P = NP if and only if CIRCUIT-SAT∈P

Last lecture: There is a polynomial-time

reduction from CIRCUIT-SAT to 3SAT

(and vice versa).

∴ Thus 3-SAT∈P if and only if CIRCUIT-SAT∈P.

So Cook-Levin Theorem is:

10

Cook–Levin Theorem

P = NP if and only if CIRCUIT-SAT∈P

In particular, if P ≠ NP

then CIRCUIT-SAT ∉ P.

―CIRCUIT-SAT is the

hardest problem in NP‖

The hardest problem(s) in NP

P = NP if and only if CIRCUIT-SAT∈P

Last lecture: There is a polynomial-time

reduction from CIRCUIT-SAT to 3-COL.

∴ If 3-COL∈P then CIRCUIT-SAT∈P.

And hence all of NP is in P.

If CIRCUIT-SAT is in P, then all of NP is in P.

∴ P = NP if and only if 3-COL∈P.

The hardest problem(s) in NP

P = NP if and only if 3-COL∈P

Fact (Yato–Seta 2002): There‘s is a poly-time

reduction from 3-COL to SUDOKU.

∴ If SUDOKU∈P then 3-COL∈P.

And hence all of NP is in P.

∴ P = NP if and only if SUDOKU∈P.

No-Promises Sudoku n×n × n×n

Question:

 Is there a fixed constant c and an algorithm A

 such that A solves the decision problem in

 time O(nc)?

This is equivalent to

the P vs. NP problem!

Reductions

Language A has a polynomial-time oracle reduction

 (also called Cook reduction) to language B:

Definition 1:

Poly-time

algorithm

deciding A

input x

oracle for B

y∈B?

YES/NO

z∈B?

YES/NO

output

YES/NO

Reductions

Language A has a polynomial-time

 mapping reduction (also called Karp reduction)

 to language B:

Definition 2:

Poly-time

reduction

algorithm

input x outputs z

… such that x∈A if and only if z∈B.

(we prefer this kind)

11

Reductions

Language A has a polynomial-time

mapping reduction to language B (denoted A m B):

… means there is a poly-time computable

 function f such that x∈A if and only if f(x)∈B.

Fact: If A has a (mapping) reduction to B,

 and B∈P, then A∈P.

Reductions from last lecture

(3-COL to/from CIRCUIT-SAT, INDEP-SET to/from CLIQUE)

were mapping reductions.

Cook–Levin Theorem revisited

P = NP if and only if CIRCUIT-SAT∈P

Actual theorem statement:

Let L be any language in NP.

Then there is a poly-time mapping reduction

 from L to CIRCUIT-SAT.

∴ CIRCUIT-SAT∈P ⇒ NP ⊆ P ⇒ NP = P.

And NP = P ⇒ CIRCUIT-SAT∈P

 because CIRCUIT-SAT∈NP.

Cook–Levin Theorem revisited

P = NP if and only if CIRCUIT-SAT∈P

Actual theorem statement:

Let L be any language in NP.

Then there is a poly-time mapping reduction

 from L to CIRCUIT-SAT.

The proof of the Cook–Levin Theorem is not

too hard. We‘ll mention the high level idea later.

NP-completeness

Definition:

A language L is NP-hard if every language

in NP has a mapping reduction to L.

Note: Cook–Levin  ―CIRCUIT-SAT is NP-hard‖.

Definition: A language L is NP-complete if:

 a) L is NP-hard; and b) L∈NP.

NP-complete = ―hardest problem in NP‖.

 E.g.: CIRCUIT-SAT.

NP-completeness

Theorem: 3-COL is NP-complete.

Proof:

3-COL ∈ NP ✔

3-COL NP-hard because…

CIRCUIT-SAT m 3-COL (last class)

All languages in NP (mapping) reduce to CIRCUIT-SAT.

∴ all languages in NP (mapping) reduce to 3-COL

 (by composing the two reductions).

IMPORTANT: Recipe for NP-completeness

To prove a decision problem (language) is NP-complete:

Step 1: Prove it is in NP.

Step 2: Prove that some known NP-complete

language mapping reduces to it.

Be sure the reduction goes in the right direction!

 To show B is hard, mapping reduce

some other hard problem A to it, i.e, A m B.

Remember: reducing B to a hard problem does not

show that B is hard. (Eg. 2-COLOR reduces to HALT)

12

NP-completeness via reductions

All languages in NP

CIRCUIT-SAT

Cook–Levin

3-COL

INDEP-SET

SUDOKU

HAM-CYCLE

3-SAT

NP-completeness via reductions

CIRCUIT-SAT

3-COL INDEP-SET
SUDOKU

HAM-CYCLE

3-SAT

Each of these is a ―hardest problem in NP‖.

Either ALL of them are in P,

 or NONE OF THEM is in P.

CIRCUIT-SAT

3-COL INDEP-SET
SUDOKU

HAM-CYCLE

3-SAT

Many more important algorithmic

problems have been proven NP-complete:

• Finding optimal schedules

• Packing objects into bins optimally

• Traveling Salesperson Problem

• Allocating variables to registers optimally

• Laying out circuits optimally

• ….

How many algorithms problems

have been proven to be NP-complete?

My guess is that 10,000 is probably

the right order of magnitude.

Problems in every branch of science.

Remember: if even a single one of them

is shown to be in P, then all of them are in P!

The fact that this hasn‘t happened is

the reason 99.9% of people believe P≠NP.

Here are some random problems

also known to be NP-complete:

Given a, b, c: is there 0 ≤ x ≤ c such that x2 = a (mod b)?

(Nov. 2011): Given a stack of pancakes and a number k,

 can you sort the stack using ≤ k flips?

(Oct 2002): Given a sequence of Tetris pieces

 and a number k, can you clear ≥ k lines?

(March 2012): Given a Super Mario Bros. level, is it completable?

13

Proving Cook-Levin theorem

 Recall: we want to reduce an

 arbitrary language A  NP to Circuit-SAT

 What do we know about A due to its being in NP?

 Membership in A has a poly-time verifier V

 x  A   y, |y| ≤ |x|c such that V(x,y)=YES

 Main idea: For a fixed x, can build a circuit Cx of polynomial

size that simulates V with first input hardwired to x:

 Cx(y) = V(x,y)

 Telling if x  A amounts to telling if Cx is satisfiable

 x  Cx is a poly-time mapping reduction from

 A to Circuit-SAT.

Definitions:

Decision/search problems

P, NP, NP-hard, NP-complete

Poly-time (mapping) reduction

Theorems:

Cook–Levin Theorem

How-to:

Prove languages in P

Prove languages in NP

Show NP-completeness

Prove languages NP-hard

 by reduction

Study Guide

