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15-251: Great Theoretical Ideas in Computer Science 

P vs. NP 

Lecture 24 

November 20, 2014 

$1,000,000 

—  the prize for solving any 

of the Millennium Prize Problems 

Millennium Prize Problems 

1. Birch and Swinnerton-Dyer Conjecture 

2. Hodge Conjecture 

3. Existence & smoothness for Navier–Stokes 

4. Poincaré Conjecture 

5. P vs. NP 

6. Riemann Hypothesis 

7. Yang–Mills existence and mass gap 

Suppose that you are organizing housing accommodations for a group of  four 

hundred university students. Space is limited and only one hundred of  the 

students will receive places in the dormitory. To complicate matters, the Dean 

has provided you with a list of  pairs of  incompatible students, and requested 

that no pair from this list appear in your final choice. This is an example of  

what computer scientists call an NP-problem, since it is easy to check if  a 

given choice of  one hundred students proposed by a coworker is satisfactory 

(i.e., no pair taken from your coworker's list also appears on the list from the 

Dean's office), however the task of  generating such a list from scratch seems 

to be so hard as to be completely impractical. Indeed, the total number of  

ways of  choosing one hundred students from the four hundred applicants is 

greater than the number of  atoms in the known universe! Thus no future 

civilization could ever hope to build a supercomputer capable of  solving the 

problem by brute force; that is, by checking every possible combination of  100 

students. However, this apparent difficulty may only reflect the lack of  

ingenuity of  your programmer. In fact, one of  the outstanding problems in 

computer science is determining whether questions exist whose answer can 

be quickly checked, but which require an impossibly long time to solve by any 

direct procedure. Problems like the one listed above certainly seem to be of  

this kind, but so far no one has managed to prove that any of  them really are 

so hard as they appear, i.e., that there really is no feasible way to generate an 

answer with the help of  a computer. Stephen Cook and Leonid Levin 

formulated the P (i.e., easy to find) versus NP (i.e., easy to check) problem 

independently in 1971. 

www.claymath.org/millennium/P_vs_NP/ 

If one of them is solved 

in the next few years, it‘ll 

probably be P vs. NP. 

If, in the year 3000, exactly 

one of them is unsolved, 

it‘ll unquestionably be P vs. NP. 

Why did Lovász say that? 

Keith Devlin in his book 

 “The Millennium Problems: The Seven Greatest 

Unsolved Mathematical Puzzles of  Our Time” 

Millennium Prize Problems 

1. Birch and Swinnerton-Dyer Conjecture 

2. Hodge Conjecture 

3. Existence & smoothness for Navier–Stokes 

4. Poincaré Conjecture 

5. P vs. NP 

6. Riemann Hypothesis 

7. Yang–Mills existence and mass gap 

The only one with 

philosophical & 

metamathematical 

implications. 

http://www.claymath.org/millennium/P_vs_NP/
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Millennium Prize Problems 

1. Birch and Swinnerton-Dyer Conjecture 

2. Hodge Conjecture 

3. Existence & smoothness for Navier–Stokes 

4. Poincaré Conjecture 

5. P vs. NP 

6. Riemann Hypothesis 

7. Yang–Mills existence and mass gap 

Solved in 2003 

by Grisha Perelman. 

What is the P vs. NP problem? 

Sudoku Sudoku 3×3 × 3×3 

Sudoku 4×4 × 4×4 Sudoku 4×4 × 4×4 
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No-Promises Sudoku 

5 

This one has no solution. 

4×4 × 4×4 No-Promises Sudoku 

5 

This one has multiple solutions. 

4×4 × 4×4 

No-Promises Sudoku n×n × n×n 

Given a partially filled n×n×n×n Sudoku grid, 

output YES or NO:  can it be validly completed? 

Naive decision algorithm:   

     For each empty cell (≤ n4), try each possible digit.   

    Check if that‘s a valid solution.  Overall time ≈ nn4
. 

Smart decision algorithm:  ??? 

Verifying a proposed solution:  Time O(n4). 

No-Promises Sudoku n×n × n×n 

Naive decision algorithm:  Time ≈ nn4
. 

Verifying a proposed solution:  Time O(n4). 

For n = 100 (meaning 10,000 100 x 100 grids): 

Verifying a solution:    ≈ 100M steps. 

Your cell phone can do this in 1 second. 

Naive algorithm:  a number with ≈ 200M digits. 

Insanely larger than # of quarks in the universe. 

No-Promises Sudoku n×n × n×n 

Question: 
 

  Is there a fixed constant c and an algorithm A 

  such that A solves the decision problem in 

  time O(nc)? 

 

This is equivalent to 

the P vs. NP problem! 

Is this famous $1,000,000 problem  

really about Sudoku?? Yes and no. 

Here‘s how P vs. NP is usually (informally) stated: 

Let L be an algorithmic task. 
 

Suppose there is an efficient algorithm 

for verifying solutions to L. 
 

Is there always also an efficient algorithm 

for finding solutions to L? 

―L∈NP‖ 

―L∈P‖ 
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Isn‘t Sudoku just one particular instance 

of this question? 

Let L be an algorithmic task. 
 

Suppose there is an efficient algorithm 

for verifying solutions to L. 
 

Is there always also an efficient algorithm 

for finding solutions to L? 

―L∈NP‖ 

―L∈P‖ 

We‘ll see:  It‘s true for all problems  

   if and only if it is true for Sudoku! 
Let‘s develop these notions formally… 

We‘ll start by describing some 

sample algorithmic problems. 

3-Coloring 

Input:  A graph 

Task:   Decide if there is a 3-coloring. 

    If so, find one. 

Circuit-Sat 

Input:  A boolean circuit C 

Task:   Decide if there is a 0/1 

    setting to the input 

    wires which ―satisfies‖ C 

    (makes output wire 1).   

    If so, find such a setting. 

AND OR 

NOT 
AND 

OR 

x1 x2 x3 

1 0 0 

Hamiltonian Cycle 

Input:  A graph 

Task:   Decide if there is a Hamiltonian Cycle 

      in it, meaning a cycle that visits each  

    vertex exactly once.  If so, find one. 

Bipartite Perfect Matching 

Input:  A bipartite graph 

Task:   Decide if there is a perfect matching. 

    If so, find one. 
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Input:  A partially filled 

    n2×n2 Sudoku grid 

Task:   Decide if there is a valid Sudoko  

    completion.  If so, find one. 

(No-Promises) Sudoku n×n × n×n Decision vs. Search 

Each of these problems was of the form,  

   ―Does a solution exist?  If so, find one.‖ 

Decision problem Search problem 

For simplicity, we focus on decision problems. 

(Given a decision algorithm, it‘s usually 

easy to use it to solve the search problem.  

We saw this for 3-coloring in last lecture) 

Reducing search to decision 

AND OR 

NOT 
AND 

OR 

x1 x2 x3 

Example:  Circuit-Sat 

Suppose you have a good 

decision alg. for Circuit-Sat. 
 

How can you get a good alg. 

for solving the search problem? 
 

Hint:  

  Try fixing x1 to 0, fixing x1 to 1,  

  and running the decision alg. in both cases. 

Decision problems as languages 

Given G, does it have 

a Hamiltonian cycle? 

Given bipartite G, does 

it have a perfect matching? 

Given circuit C, does it have 

a ―satisfying‖ input string? 

Given graph G, is it 

3-colorable? 

Given partially filled Sudoku 

grid S, can it be completed? 

Decision problems Languages in {0,1}* 

HAM-CYCLE = {⟨G⟩ : G contains a 

Hamiltonian cycle} 

PMATCH = {⟨G⟩ : G is bipartite,     

has perfect matching} 

CIRCUIT-SAT = {⟨C⟩ : C has a      

satisfying input} 

3-COL = {⟨G⟩ : G is 3-colorable} 

SUDOKU = {⟨S⟩ : S can be validly 

completed} 

Given TM M and input x, 

does M(x) halt? 
HALTS = {⟨M,x⟩ : M(x) halts} 

Decision problems as languages 

Languages in {0,1}* 

PMATCH = {⟨G⟩ : G is bipartite,     

has perfect matching} 

CIRCUIT-SAT = {⟨C⟩ : C has a      

satisfying input} 

3-COL = {⟨G⟩ : G is 3-colorable} 

SUDOKU = {⟨S⟩ : S can be validly 

completed} 

HALTS = {⟨M,x⟩ : M(x) halts} 

No Turing Machine 

(or Java algorithm) 

can decide this one. 

Is there a TM 

(or Java algorithm) 

which decides 

the others? 

Of course! 

HAM-CYCLE = {⟨G⟩ : G contains a 

Hamiltonian cycle} 

Efficiency 

  HAM, PMATCH, CIRCUIT-SAT, 3-COL, SUDOKU 

      can all be decided by ―trying all possibilities.‖ 

  E.g., there is a naive algorithm for deciding 

          3-COL which runs in ≈ 3
|V|

 time. 

  We care about more than just  

 ―Is there an algorithm?‖ 
 

  We care about  

        ―Is there a reasonably ‗efficient‘ algorithm?‖ 
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What is ‗efficient‘? 

Is your algorithm for deciding L ‘efficient’ if 

on input strings of length n it runs in time… 

O(n) ? 

O(n log n) ? 

O(n2) ? 

O(n6) ? 

O(nlog n) ? 

O(2n) ? 

O(n!) ? 

Sure (unless the constant is huge…) 

Sure. 

Kind of efficient. 

Barely…  

Not really…  

No. 

Please.  Internet ≈ 22! bytes. 

What is ‗efficient‘? 

Is your algorithm for deciding L ‘efficient’ if 

on input strings of length n it runs in time… 

O(n) ? 

O(n log n) ? 

O(n2) ? 

O(n6) ? 

O(nlog n) ? 

O(2n) ? 

O(n!) ? 

Not efficient 

Polynomial time: 

  O(nc) for some fixed c. 
 

Arguably efficient 

Polynomial time 

Polynomial time is the standard ‗theoretical‘ 

definition of ‗efficient‘. 

It is a very ―low bar‖ for efficiency: 

if it‘s not poly-time, it‘s really not efficient. 

Yes, yes, yes, an algorithm running in 

time O(n100) is not actually efficient in practice. 

It‘s a low bar:  a polynomial time solution is a 

necessary first step towards a truly efficient one. 

Polynomial time 

50 years of computer science experience 

    shows it‘s a very compelling definition: 
 

• It‘s independent of the ―machine model‖: 

    poly-time on a TM = poly-time on a RAM 

=  poly-time in Java   = poly-time in Python 
 

• It‘s ―robust‖: plug a poly-time subroutine 

into a poly-time algorithm: still poly-time. 
 

• Empirically, it seems that most natural 

problems with poly-time algorithms also  

have efficient-in-practice algorithms. 

Polynomial time 

P 

The set of all languages L such that 

   there is a constant c   

   and an algorithm (TM) A 

   such that A decides L and 

   A runs in time O(|x|c) on all inputs x. 

= 

Examples 

CONN = {⟨G⟩ : G is a connected graph} ∈ P. 

Why? 

Given graph G with n nodes, can correctly decide 

connectivity by doing breadth-first-search, counting 

the number of nodes seen, checking if the count equals n. 

 

Running time is O(|V| + |E|) = O(n2) in most reasonable 

models (maybe O(n4) on a poor Turing Machine). 

 

(Input size |⟨G⟩| is ≥ n for most reasonable encodings.) 
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Examples 

CONN = {⟨G⟩ : G is a connected graph} ∈ P. 

PMATCH = {⟨G⟩ : G is a bipartite graph with  

  a perfect matching}      ∈ P. 

Why? 

We described an O(n3) time algorithm 

     in Lecture 12 (Graphs II). 

Examples 

CONN = {⟨G⟩ : G is a connected graph} ∈ P. 

PMATCH = {⟨G⟩ : G is bip., has perf. matching}  

 ∈ P. 

2-COL ∈ P. 

3-COL: Probably not in P, but no one knows. 

CIRCUIT-SAT, HAM-CYCLE, SUDOKU: 

      also unknown if they are in P. 

Examples 

Let SAME-REG = { ⟨R1, R2⟩ :  

                                R1, R2 are reg. exprs. 

                                 using ⋃,⋅, squaring,  

                        such that L(R1) = L(R2) } 

⟨ a(a⋃b)2,  aaa⋃aab⋃aba⋃abb ⟩ ∈ SAME-REG 

⟨ a2(a⋃b),  aaa⋃abb ⟩ ∉ SAME-REG 

Theorem (Meyer–Stockmeyer 1972):   

SAME-REG ∉ P 

So we understand P. 

Great, we‘re halfway there! 

Now what is NP? 

Verifying solutions 

SUDOKU:  Filling in the grid may be tough, 

   but if someone gives you a solution, 

   verifying  it is easy (poly-time). 

3-COL, CIRCUIT-SAT, HAM-CYCLE: 

   similarly easy to verify solutions. 

PMATCH:   similarly easy to verify a solution. 

NP: poly-time verifiability 

    Informally, NP is the set of all languages L 

    such that there is a poly-time algorithm V 

    which can verify that x ∈ L if it is (magically) 

    given a valid certificate (aka proof, witness) that x ∈ L. 

Remark: The ‗N‘ in NP stands for ‗nondeterministic‘. 

   It does not stand for not !! 

Reason for terminology is that NP can also be defined 

as languages decided by a 

―nondeterministic‖ version of poly-time TMs (similar to NFAs) 
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NP: formal definition 

Let L be a language.  We say L∈NP iff…  

 

There are constants c, d and an algorithm V  

      called the ―verifier‖ such that: 

 

V takes two inputs, x and y, where |y| ≤ O(|x|c). 

x is called the ―real input‖; y is called the ―certificate‖. 

V(x,y) runs in time O((|x|+|y|)d). 

 

     ∀x∈L,  ∃y  such that V(x,y) outputs YES, 

     ∀x∉L,  ∀y,                 V(x,y) outputs NO. 

  

Examples 

SUDOKU ∈ NP. Why? 

The verifying algorithm V takes as input: 

 x: a partially filled n2×n2 Sudoku grid; 

 y:       supposed to be a valid completion of x. 
 

Note that the ―certificate‖ y satisfies |y| ≤ O(|x|). 

Now V just checks two things: 

• on all non-blank cells in x, same value appears in y; 

• y is a valid Sudoku solution. 

 

V runs in polynomial time: in fact, O(|x|+|y|) time. 

Examples 

SUDOKU ∈ NP. Why? 

The verifying algorithm V takes as input: 

 x: a partially filled n2×n2 Sudoku grid; 

 y:       supposed to be a valid completion of x. 

 

For all x∈SUDOKU, there must be a valid completion y.  

If magically given this y,  V(x,y) will output YES. 
 

For all x∉SUDOKU, there is no valid completion y. 

So whatever y is given,  V(x,y) will output NO. 

Examples 

3-COL ∈ NP. Why? 

Briefly: 
 

 The verifying algorithm takes graph x 

 and expects y to be a valid 3-coloring. 
 

 In polynomial time, can check that y 

 is indeed a valid 3-coloring of x. 

REMINDER:  Verifier V does not need to  

       find the certificate. 

Examples 

HAM-CYCLE, CIRCUIT-SAT ∈ NP.    (Why?) 

Is  = {⟨G⟩ : G is NOT 3-colorable} in NP? 

Informally, is there an easy-to-check 

certificate that a graph is NOT 3-colorable?  

Probably not, but no one knows. 

not known if in NP. 

Examples 

PMATCH ∈ NP. 

 

One reason:  

     Verifying a given perfect matching is easy. 

 

Another reason:   

     Because PMATCH ∈ P! 

 

Fact:     P ⊆ NP. 
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P ⊆ NP 
Proof:    

   Suppose L∈P.   

   Let A be a poly-time alg. which decides L.   

   Let V be the following verifier algorithm: 

   V takes as input: 

   real input x, ―certificate‖ y of length 0. 

   V(x,y) just runs A(x) and gives its output. 
 

 

 
 

―Verifier doesn‘t need a certificate: 

it can check membership in L itself.‖ 

Proofs that a language is NP are 

almost quite easy.  But… 

Let         = {⟨G⟩ : G is bipartite, does NOT  

       have a perfect matching }. 

Is       in NP? 

Yes!  Clearly       ∈ P  because  PMATCH ∈ P. 
 

(Just run the PMATCH algorithm, reverse the answer.) 
 

∴     ∈ NP  because  P ⊆ NP. 

The P vs. NP problem 

We know that P ⊆ NP. 
 

Does P = NP? 

If P = NP then there is an efficient 

(polynomial-time) algorithm for 

SUDOKU, 3-COL, CIRCUIT-SAT, HAM-CYCLE, … 
 

That would be awesome!! 

The P vs. NP problem 

We know that P ⊆ NP. 
 

Does P = NP? 

If P ≠ NP then… 

There is some particular L∈NP which is not in P. 
 

Doesn‘t sound like a big deal. 

Maybe it‘s just some uninteresting, obscure L. 

Cook–Levin Theorem 

P = NP  if and only if  3-SAT ∈ P 

In particular, if P ≠ NP 

then 3-SAT ∉ P. 

―3-SAT is the 

hardest problem in NP‖ 

The hardest problem(s) in NP 

P = NP  if and only if  CIRCUIT-SAT∈P 

Last lecture:  There is a polynomial-time 

reduction from CIRCUIT-SAT to 3SAT  

(and vice versa). 

∴ Thus 3-SAT∈P if and only if CIRCUIT-SAT∈P. 

So Cook-Levin Theorem is: 
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Cook–Levin Theorem 

P = NP  if and only if  CIRCUIT-SAT∈P 

In particular, if P ≠ NP 

then CIRCUIT-SAT ∉ P. 

―CIRCUIT-SAT is the 

hardest problem in NP‖ 

The hardest problem(s) in NP 

P = NP  if and only if  CIRCUIT-SAT∈P 

Last lecture:  There is a polynomial-time 

reduction from CIRCUIT-SAT to 3-COL. 

∴ If 3-COL∈P then CIRCUIT-SAT∈P. 

And hence all of NP is in P. 

If CIRCUIT-SAT is in P, then all of NP is in P. 

∴ P = NP  if and only if  3-COL∈P. 

The hardest problem(s) in NP 

P = NP  if and only if  3-COL∈P 

Fact (Yato–Seta 2002):  There‘s is a poly-time 

reduction from 3-COL to SUDOKU. 

∴ If SUDOKU∈P then 3-COL∈P. 

And hence all of NP is in P. 

∴ P = NP  if and only if  SUDOKU∈P. 

No-Promises Sudoku n×n × n×n 

Question: 
 

  Is there a fixed constant c and an algorithm A 

  such that A solves the decision problem in 

  time O(nc)? 

 

This is equivalent to 

the P vs. NP problem! 

Reductions 

Language A has a polynomial-time  oracle reduction 

 (also called Cook reduction) to language B: 

Definition 1: 

Poly-time 

algorithm 

deciding A 

input x 

oracle for B 

y∈B? 

YES/NO 

z∈B? 

YES/NO 

output 

YES/NO 

Reductions 

Language A has a polynomial-time  

     mapping reduction   (also called Karp reduction) 

     to language B: 

Definition 2: 

Poly-time 

reduction 

algorithm 

 

input x outputs z 

… such that x∈A if and only if z∈B. 

(we prefer this kind) 
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Reductions 

Language A has a polynomial-time  

mapping reduction to language B (denoted A m B): 

… means there is a poly-time computable 

    function f such that x∈A if and only if f(x)∈B. 

Fact:  If A has a (mapping) reduction to B, 

   and B∈P, then A∈P. 

Reductions from last lecture  

(3-COL to/from CIRCUIT-SAT, INDEP-SET to/from CLIQUE) 

were mapping reductions. 

Cook–Levin Theorem revisited 

P = NP  if and only if  CIRCUIT-SAT∈P 

Actual theorem statement: 

Let L be any language in NP.   

Then there is a poly-time mapping reduction  

      from L to CIRCUIT-SAT. 

∴ CIRCUIT-SAT∈P  ⇒  NP ⊆ P  ⇒  NP = P. 

And NP = P  ⇒  CIRCUIT-SAT∈P 

         because CIRCUIT-SAT∈NP. 

Cook–Levin Theorem revisited 

P = NP  if and only if  CIRCUIT-SAT∈P 

Actual theorem statement: 

Let L be any language in NP.   

Then there is a poly-time mapping reduction  

      from L to CIRCUIT-SAT. 

The proof of the Cook–Levin Theorem is not  

too hard.  We‘ll mention the high level idea later. 

NP-completeness 

Definition: 

A language L is NP-hard if every language 

in NP has a mapping reduction to L. 

Note:  Cook–Levin  ―CIRCUIT-SAT is NP-hard‖. 

Definition: A language L is NP-complete if: 

   a) L is NP-hard;   and  b) L∈NP. 

NP-complete = ―hardest problem in NP‖.   

   E.g.: CIRCUIT-SAT. 

NP-completeness 

Theorem: 3-COL is NP-complete. 

Proof: 

3-COL ∈ NP   ✔ 

3-COL NP-hard because… 

CIRCUIT-SAT m 3-COL  (last class) 

All languages in NP (mapping) reduce to CIRCUIT-SAT. 

∴ all languages in NP (mapping) reduce to 3-COL 

    (by composing the two reductions). 

IMPORTANT: Recipe for NP-completeness 

To prove a decision problem (language) is NP-complete: 

Step 1:  Prove it is in NP. 

Step 2:  Prove that some known NP-complete 

language mapping reduces to it.                  

Be sure the reduction goes in the right direction! 

 To show B is hard, mapping reduce  

some other hard problem A to it, i.e, A m B. 

Remember: reducing B to a hard problem does not 

show that B is hard. (Eg. 2-COLOR reduces to HALT) 
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NP-completeness via reductions 

All languages in NP 

CIRCUIT-SAT 

Cook–Levin 

3-COL 

INDEP-SET 

SUDOKU 

HAM-CYCLE 

3-SAT 

NP-completeness via reductions 

CIRCUIT-SAT 

3-COL INDEP-SET 
SUDOKU 

HAM-CYCLE 

3-SAT 

Each of these is a ―hardest problem in NP‖. 

Either ALL of them are in P,  

  or NONE OF THEM is in P. 

CIRCUIT-SAT 

3-COL INDEP-SET 
SUDOKU 

HAM-CYCLE 

3-SAT 

Many more important algorithmic 

problems have been proven NP-complete: 

•   Finding optimal schedules 

•   Packing objects into bins optimally 

•   Traveling Salesperson Problem 

•   Allocating variables to registers optimally 

•   Laying out circuits optimally 

•   …. 

How many algorithms problems 

have been proven to be NP-complete? 

My guess is that 10,000 is probably 

the right order of magnitude.   

Problems in every branch of science. 

Remember:  if even a single one of them 

is shown to be in P, then all of them are in P! 

The fact that this hasn‘t happened is 

the reason 99.9% of people believe P≠NP. 

Here are some random problems 

also known to be NP-complete: 

Given a, b, c:  is there 0 ≤ x ≤ c such that x2 = a (mod b)? 

(Nov. 2011):  Given a stack of pancakes and a number k, 

              can you sort the stack using ≤ k flips? 

(Oct 2002):  Given a sequence of Tetris pieces 

         and a number k, can you clear ≥ k lines? 

(March 2012):  Given a Super Mario Bros. level, is it completable? 
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Proving Cook-Levin theorem 

 Recall: we want to reduce an  

  arbitrary language A  NP to Circuit-SAT 

 What do we know about A due to its being in NP? 

 Membership in A has a poly-time verifier V  

 x  A   y, |y| ≤ |x|c such that V(x,y)=YES 

 Main idea: For a fixed x, can build a circuit Cx of polynomial 

size that simulates V with first input  hardwired to x: 

 Cx(y) = V(x,y) 

 Telling if x  A amounts to telling if Cx is satisfiable 

 x  Cx is a poly-time mapping reduction from  

 A to Circuit-SAT. 

 

 

Definitions: 

Decision/search problems 

P, NP, NP-hard, NP-complete 

Poly-time (mapping) reduction 

 
Theorems: 

Cook–Levin Theorem 

How-to: 

Prove languages in P 

Prove languages in NP 

Show NP-completeness 

Prove languages NP-hard  

         by reduction 

Study Guide 


