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15-251: Great Theoretical Ideas in Computer Science 

Efficient Reductions  

Fall 2014; Lecture 23 

November 18, 2014 

Reductions 

How to tell a mathematician from and an engineer: 

 

 Put an empty kettle in the middle of the kitchen floor and tell 
your subjects to boil some water.  

 The engineer will fill the kettle with water, put it on the stove, 
and turn the flame on. The mathematician will do the same 
thing.  

 Next, put the kettle already filled with water on the stove, and 
ask the subjects to boil the water.  

 The engineer will turn the flame on. 

 The mathematician will empty the kettle and put it in the middle 
of the kitchen floor... thereby reducing the problem to one that 
has already been solved! 

A Graph Named “Gadget” K-Coloring 

We define a k-coloring of  a graph: 

Each node gets colored with one color 

At most k different colors are used 

If  two nodes have an edge between them 

they must have different colors 

A graph is called k-colorable if  and only if  it 

has a k-coloring 

A 2-CRAYOLA Question! 

Is Gadget 2-colorable? 

No, it contains a triangle 

A 2-CRAYOLA Question! 

Given a graph G, how can we decide if  

it is 2-colorable? 

Answer: Enumerate all 2n possible 
colorings to look for a valid 2-color 

How can we decide if  G is 
2-colorable (aka bipartite)? 

Theorem: G contains an odd cycle if  and only 
if  G is not 2-colorable 
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Else, output graph is not 2-colorable (the 

conflict proves no 2-coloring is possible, 

and there is an odd cycle) 

Efficient 2-coloring algorithm: 

To 2-color a connected graph G, pick an 

arbitrary node v, and color it white 

Color all v’s neighbors black 

Color all their uncolored neighbors 

white, and so on 

If  the algorithm terminates without a 

color conflict, output the 2-coloring 

A 3-CRAYOLA Question! 

Is Gadget 3-colorable? 

Yes! 

A 3-CRAYOLA Question! 

Is the “wheel” 3-colorable? 

3-Coloring Is Decidable  

by Brute Force 

Try out all 3n colorings until you 

determine if  G has a 3-coloring 

Best known algorithms take cn time  

for some c > 1 (exponential runtime) 

3-Colorability 

Oracle  

YES/NO 

A 3-CRAYOLA Oracle 

3-Colorability 

Search Oracle  

NO, or 

YES here is how: 

gives 3-coloring 

of  the nodes 

Better 3-CRAYOLA Oracle 
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3-Colorability 

Decision Oracle  
3-Colorability 

Search Oracle  GIVEN:               

3-Colorability 

Decision Oracle  

BUT I really 

want a  

SEARCH 

oracle 

Search vs. Decision 

How do I turn a 

mere decision 

oracle into a 

search oracle? 
GIVEN:               

3-Colorability 

Decision Oracle  

Search using Decision 

What if  I gave the oracle 

partial colorings of  G? For 

each partial coloring of  G, I 

could pick an uncolored node 

and try different colors on it 

until the oracle says “YES” 

 Flaw in Idea 

Hmm, but the 

oracle does not 

take partial 

colorings  

A Fix 

GIVEN:               

3-Colorability 

Decision Oracle  
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A Fix 

GIVEN:               

3-Colorability 

Decision Oracle  

Let’s now look at two 

other problems: 

 

1. K-Clique 

2. K-Independent   

Set 

K-Cliques 

A K-clique is a set of  K nodes with all 

K(K-1)/2 possible edges between them 

This graph contains a 4-clique 

 Largest clique in gadget graph? 

Given: (G, k) 

Question: Does G contain a k-clique? 

BRUTE FORCE: Try out all  n choose k 

possible locations for the k clique 

No substantially faster algorithm known! 

This graph 

contains an 

independent 

set of  size 3 

Independent Set 

An independent set is a set of  nodes with 

no edges between them 
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Independent set in gadget graph 

 Given: (G, k) 

Question: Does G contain an 

independent set of  size k? 

BRUTE FORCE: Try out all n choose k 

possible locations for the k independent 

set 

No substantially faster algorithm known! 

Clique / Independent Set 

Two problems that are 

cosmetically different, but the 

same substance-wise 

Complement of  G 

Given a graph G, let Gc, the complement of  G, 

be the graph obtained by the rule that two 

nodes in Gc are connected if  and only if  the 

corresponding nodes of  G are not connected 

G Gc 

G has a k-clique 

Gc has an 

independent 

set of  size k 

 

Independent set reduces to Clique 

GIVEN: 

Clique 

Oracle  

BUILD: 

Independent 

Set Oracle 

(G,k) 

(Gc, k) 
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Clique reduces to Independent set 

GIVEN: 

Independent 

Set Oracle  

BUILD: 

Clique 

Oracle 

(G,k) 

(Gc, k) 

Thus, we can quickly 

reduce a clique 

problem to an 

independent set 

problem and vice versa  

 

 

 

 

 

 

There is a fast 

method for one if  

and only if   there is a 

fast method for the 

other 

The reduction has a particularly 

simple form (“just one oracle call”) 

 

“Mapping reduction” 

(G,k)  Clique iff  (Gc,k)  INDSET 

 

Let A, B  * 

A is mapping reducible to B if  there 

is an “efficient” map f  : *  * 

such that    x  A  f(x)  B 

 

If  A mapping reduces to B,  

then an efficient algorithm for B 

implies an efficient algorithm for A. 

 

“A is no harder than B” 

 

Contrapositively, if  A doesn’t admit 

an efficient algorithm, then B has 

no efficient algorithm either. 

 

“B is no easier than A” 

 

Let’s now look at two 

other problems: 

 

1.  Circuit Satisfiability 

2.  Graph 3-Colorability 

Combinatorial Circuits 
AND, OR, NOT, 0, 1 gates wired 

together with no feedback allowed 

x3 x2 x1 

AND AND 

OR 

OR 

OR 
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AND 

AND 

NOT 

0 1 1 

1 

Yes, this circuit is 

satisfiable: 110 

Circuit-Satisfiability 
Given a circuit with n-inputs and one output, is 

there a way to assign 0-1 values to the input 

wires so that the output value is 1 (true)? 

BRUTE FORCE: Try out all 2n assignments 

Circuit-Satisfiability 

Given: A circuit with n-inputs and one output, 

is there a way to assign 0-1 values to the input 

s so that the output value is 1 (true)? 

Again, no substantially faster algorithm known 

(not even cn time for any constant c < 2) 

3-Colorability 
Circuit 

Satisfiability 

AND 

AND 

NOT 

T F 

X NOT gate! 

F T 

X 
Y 

F F T 

X 
Y 

F 

T T T 
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F T 

X 
Y 

F 

F F 
F F 

F T 

X 
Y 

F 

T F T 

F T 

X 
Y 

F 

F 
T 

F T 

X 
Y 

X Y 

F F F 

F T T 

T F T 

T T T 

Z 

F 

Z 

= X  Y 

OR Gate! 

OR 

OR 

NOT 

x y z 

x 
y 

z 

OR 

OR 

NOT 

x y z 

x 
y 

z 
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OR 

OR 

NOT 

x y z 

x 
y 

z 

OR 

OR 

NOT 

x y z 

x 
y 

z 

OR 

OR 

NOT 

x y z 

x 
y 

z 

How do we force the 

graph to be 3 colorable 

exactly when the 

circuit is satifiable? 

Reducing Circuit-Sat to 3COLOR 

GIVEN:       

3-color 

Oracle  

BUILD: 

Circuit-Sat 

Oracle 

Graph composed of  

gadgets that mimic 

the gates in C  

C 
(circuit with n-inputs)  

Yes/No 

Yes/No 

Upshot: 

You can quickly transform a 

method to decide 3-coloring into 

a method to decide circuit 

satisfiability! 

Given an oracle for 

circuit SAT, how can 

you quickly solve  

3-colorability? 
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Can you make a circuit 

(based on a graph) that 

takes as input a node 

coloring, and checks if  it 

is a valid 3-coloring? 

Building Blocks 

XOR  OR AND 

AND 

Building Blocks 

≠ 
 XOR XOR 

OR 

Circuit VG( ) 

Let VG(Y) be a circuit constructed for a 

graph G, that takes as input an 

assignment of  colors to nodes Y, and 

verifies that Y is a valid 3 coloring of  G. 

I.e., VG(Y) = 1 iff  Y is a 3 coloring of  G 

Y is expressed as a 2n bit sequence 

Given G, we can construct VG(Y) in time O(n+m) 

Construction of  VG   
(input bits encode a 3-coloring Y) 

 

 AND 

OR 

G 

 AND  AND 

 AND 

≠ ≠ 

bogus color bit 

Reducing 3COLOR to Circuit-Sat 

GIVEN:       

Circuit-Sat 

Oracle  

BUILD: 

3-color 

Oracle 

G 

Circuit VG 
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Circuit-SAT / 3-Colorability 

Two problems that are 

cosmetically different,  

but each is “mapping reducible” 

to the other 

 

Circuit-SAT / 3-Colorability 

Clique / Independent Set 

Given an oracle for 

circuit SAT, how can 

you quickly solve  

k-clique? 

Hint: Similar to 3-coloring case. 

Given an oracle for k-clique, 

one can build oracle for 

circuit SAT.  

In fact, CircuitSAT mapping 

reduces to k-clique 
(We won’t prove it, but it is 

convenient to go through 3SAT.  

May show reduction from 3SAT to k-

clique in  next lecture/recitation) 

Circuit-SAT / 3-Colorability 

Clique / Independent Set 

These four problems are efficiently 

reducible to each other  

FACT: No one knows a way to 

solve any of  the 4 problems 

that is fast on all instances. 

But if  one of  them has such an 

algorithm, then all of  them do! 
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3SAT 

Instance: A Boolean formula  = C1  C2  …  Cm 

• Variables x1 , x2 , …, xn and  

• clauses C1, C2, …, Cm,  

each Cj is of  the OR of  up to 3 literals,eg.   

  
Decision problem: Is there a Boolean assignment  

to the variables that satisfies  (i.e., all the clauses)  

 

3SAT is a special case of  Circuit-SAT (Why?) 

So SAT reduces to Circuit-SAT  

 (given Circuit-SAT oracle can build one for 3SAT) 

Reducing Circuit-SAT to 3SAT 

Oracle for 

3SAT 
Oracle for 

Circuit-SAT 

Circuit C 

(instance of 

Circuit-SAT) 

Instance  

 = F(C ) of 

3SAT 

F is “efficiently” computable 

Answer 

Answer 

How? 

 Write a 3CNF formula to simulate the circuit. 

•    Variable for each wire of  the circuit 

•    Clauses for each gate, to ensure correct  

 computation of  bit on outgoing wire(s)  

 from the (two) bits on incoming wires 

AND 

AND 

NOT 

NOT 

wi 

wj 

x1 x2 x3 

g3 

g1 g2 

 Write a 3CNF formula to simulate the circuit. 

•    Variable for each wire of  the circuit 

•    Clauses for each gate, to ensure correct  

 computation of  bit on outgoing wire(s)  

 from the (two) bits on incoming wires 

AND 

AND 

NOT 
AND 

wi 

wk 

x1 x2 x3 

g3 

g1 g2 

wj 

NOT 

wi 

wj 

AND 

wi 

wk 

wj 

AND 

AND 

NOT 

x1 x2 x3 

g1 g2 

How do we ensure 

using our formula that  

circuit outputs True ? 

g3 

Add the unary clause g3 

Summary 

Many problems that appear different 

on the surface can be efficiently 

reduced to each other, revealing a 

deeper similarity. 

Reductions are one of  the most versatile  

and powerful tools in theoretical computer  

science to understand and relate the  

computational complexity of  problems. 


