
1

15-251: Great Theoretical Ideas in Computer Science

Efficient Reductions

Fall 2014; Lecture 23

November 18, 2014

Reductions

How to tell a mathematician from and an engineer:

 Put an empty kettle in the middle of the kitchen floor and tell
your subjects to boil some water.

 The engineer will fill the kettle with water, put it on the stove,
and turn the flame on. The mathematician will do the same
thing.

 Next, put the kettle already filled with water on the stove, and
ask the subjects to boil the water.

 The engineer will turn the flame on.

 The mathematician will empty the kettle and put it in the middle
of the kitchen floor... thereby reducing the problem to one that
has already been solved!

A Graph Named “Gadget” K-Coloring

We define a k-coloring of a graph:

Each node gets colored with one color

At most k different colors are used

If two nodes have an edge between them

they must have different colors

A graph is called k-colorable if and only if it

has a k-coloring

A 2-CRAYOLA Question!

Is Gadget 2-colorable?

No, it contains a triangle

A 2-CRAYOLA Question!

Given a graph G, how can we decide if

it is 2-colorable?

Answer: Enumerate all 2n possible
colorings to look for a valid 2-color

How can we decide if G is
2-colorable (aka bipartite)?

Theorem: G contains an odd cycle if and only
if G is not 2-colorable

2

Else, output graph is not 2-colorable (the

conflict proves no 2-coloring is possible,

and there is an odd cycle)

Efficient 2-coloring algorithm:

To 2-color a connected graph G, pick an

arbitrary node v, and color it white

Color all v’s neighbors black

Color all their uncolored neighbors

white, and so on

If the algorithm terminates without a

color conflict, output the 2-coloring

A 3-CRAYOLA Question!

Is Gadget 3-colorable?

Yes!

A 3-CRAYOLA Question!

Is the “wheel” 3-colorable?

3-Coloring Is Decidable

by Brute Force

Try out all 3n colorings until you

determine if G has a 3-coloring

Best known algorithms take cn time

for some c > 1 (exponential runtime)

3-Colorability

Oracle

YES/NO

A 3-CRAYOLA Oracle

3-Colorability

Search Oracle

NO, or

YES here is how:

gives 3-coloring

of the nodes

Better 3-CRAYOLA Oracle

3

3-Colorability

Decision Oracle
3-Colorability

Search Oracle GIVEN:

3-Colorability

Decision Oracle

BUT I really

want a

SEARCH

oracle

Search vs. Decision

How do I turn a

mere decision

oracle into a

search oracle?
GIVEN:

3-Colorability

Decision Oracle

Search using Decision

What if I gave the oracle

partial colorings of G? For

each partial coloring of G, I

could pick an uncolored node

and try different colors on it

until the oracle says “YES”

 Flaw in Idea

Hmm, but the

oracle does not

take partial

colorings 

A Fix

GIVEN:

3-Colorability

Decision Oracle

4

A Fix

GIVEN:

3-Colorability

Decision Oracle

Let’s now look at two

other problems:

1. K-Clique

2. K-Independent

Set

K-Cliques

A K-clique is a set of K nodes with all

K(K-1)/2 possible edges between them

This graph contains a 4-clique

 Largest clique in gadget graph?

Given: (G, k)

Question: Does G contain a k-clique?

BRUTE FORCE: Try out all n choose k

possible locations for the k clique

No substantially faster algorithm known!

This graph

contains an

independent

set of size 3

Independent Set

An independent set is a set of nodes with

no edges between them

5

Independent set in gadget graph

 Given: (G, k)

Question: Does G contain an

independent set of size k?

BRUTE FORCE: Try out all n choose k

possible locations for the k independent

set

No substantially faster algorithm known!

Clique / Independent Set

Two problems that are

cosmetically different, but the

same substance-wise

Complement of G

Given a graph G, let Gc, the complement of G,

be the graph obtained by the rule that two

nodes in Gc are connected if and only if the

corresponding nodes of G are not connected

G Gc

G has a k-clique

Gc has an

independent

set of size k



Independent set reduces to Clique

GIVEN:

Clique

Oracle

BUILD:

Independent

Set Oracle

(G,k)

(Gc, k)

6

Clique reduces to Independent set

GIVEN:

Independent

Set Oracle

BUILD:

Clique

Oracle

(G,k)

(Gc, k)

Thus, we can quickly

reduce a clique

problem to an

independent set

problem and vice versa

There is a fast

method for one if

and only if there is a

fast method for the

other

The reduction has a particularly

simple form (“just one oracle call”)

“Mapping reduction”

(G,k)  Clique iff (Gc,k)  INDSET

Let A, B  *

A is mapping reducible to B if there

is an “efficient” map f : *  *

such that x  A  f(x)  B

If A mapping reduces to B,

then an efficient algorithm for B

implies an efficient algorithm for A.

“A is no harder than B”

Contrapositively, if A doesn’t admit

an efficient algorithm, then B has

no efficient algorithm either.

“B is no easier than A”

Let’s now look at two

other problems:

1. Circuit Satisfiability

2. Graph 3-Colorability

Combinatorial Circuits
AND, OR, NOT, 0, 1 gates wired

together with no feedback allowed

x3 x2 x1

AND AND

OR

OR

OR

7

AND

AND

NOT

0 1 1

1

Yes, this circuit is

satisfiable: 110

Circuit-Satisfiability
Given a circuit with n-inputs and one output, is

there a way to assign 0-1 values to the input

wires so that the output value is 1 (true)?

BRUTE FORCE: Try out all 2n assignments

Circuit-Satisfiability

Given: A circuit with n-inputs and one output,

is there a way to assign 0-1 values to the input

s so that the output value is 1 (true)?

Again, no substantially faster algorithm known

(not even cn time for any constant c < 2)

3-Colorability
Circuit

Satisfiability

AND

AND

NOT

T F

X NOT gate!

F T

X
Y

F F T

X
Y

F

T T T

8

F T

X
Y

F

F F
F F

F T

X
Y

F

T F T

F T

X
Y

F

F
T

F T

X
Y

X Y

F F F

F T T

T F T

T T T

Z

F

Z

= X  Y

OR Gate!

OR

OR

NOT

x y z

x
y

z

OR

OR

NOT

x y z

x
y

z

9

OR

OR

NOT

x y z

x
y

z

OR

OR

NOT

x y z

x
y

z

OR

OR

NOT

x y z

x
y

z

How do we force the

graph to be 3 colorable

exactly when the

circuit is satifiable?

Reducing Circuit-Sat to 3COLOR

GIVEN:

3-color

Oracle

BUILD:

Circuit-Sat

Oracle

Graph composed of

gadgets that mimic

the gates in C

C
(circuit with n-inputs)

Yes/No

Yes/No

Upshot:

You can quickly transform a

method to decide 3-coloring into

a method to decide circuit

satisfiability!

Given an oracle for

circuit SAT, how can

you quickly solve

3-colorability?

10

Can you make a circuit

(based on a graph) that

takes as input a node

coloring, and checks if it

is a valid 3-coloring?

Building Blocks

XOR OR AND

AND

Building Blocks

≠
 XOR XOR

OR

Circuit VG()

Let VG(Y) be a circuit constructed for a

graph G, that takes as input an

assignment of colors to nodes Y, and

verifies that Y is a valid 3 coloring of G.

I.e., VG(Y) = 1 iff Y is a 3 coloring of G

Y is expressed as a 2n bit sequence

Given G, we can construct VG(Y) in time O(n+m)

Construction of VG
(input bits encode a 3-coloring Y)

 AND

OR

G

 AND AND

 AND

≠ ≠

bogus color bit

Reducing 3COLOR to Circuit-Sat

GIVEN:

Circuit-Sat

Oracle

BUILD:

3-color

Oracle

G

Circuit VG

11

Circuit-SAT / 3-Colorability

Two problems that are

cosmetically different,

but each is “mapping reducible”

to the other

Circuit-SAT / 3-Colorability

Clique / Independent Set

Given an oracle for

circuit SAT, how can

you quickly solve

k-clique?

Hint: Similar to 3-coloring case.

Given an oracle for k-clique,

one can build oracle for

circuit SAT.

In fact, CircuitSAT mapping

reduces to k-clique
(We won’t prove it, but it is

convenient to go through 3SAT.

May show reduction from 3SAT to k-

clique in next lecture/recitation)

Circuit-SAT / 3-Colorability

Clique / Independent Set

These four problems are efficiently

reducible to each other

FACT: No one knows a way to

solve any of the 4 problems

that is fast on all instances.

But if one of them has such an

algorithm, then all of them do!

12

3SAT

Instance: A Boolean formula  = C1  C2  … Cm

• Variables x1 , x2 , …, xn and

• clauses C1, C2, …, Cm,

each Cj is of the OR of up to 3 literals,eg.

Decision problem: Is there a Boolean assignment

to the variables that satisfies  (i.e., all the clauses)

3SAT is a special case of Circuit-SAT (Why?)

So SAT reduces to Circuit-SAT

 (given Circuit-SAT oracle can build one for 3SAT)

Reducing Circuit-SAT to 3SAT

Oracle for

3SAT
Oracle for

Circuit-SAT

Circuit C

(instance of

Circuit-SAT)

Instance

 = F(C) of

3SAT

F is “efficiently” computable

Answer

Answer

How?

 Write a 3CNF formula to simulate the circuit.

• Variable for each wire of the circuit

• Clauses for each gate, to ensure correct

 computation of bit on outgoing wire(s)

 from the (two) bits on incoming wires

AND

AND

NOT

NOT

wi

wj

x1 x2 x3

g3

g1 g2

 Write a 3CNF formula to simulate the circuit.

• Variable for each wire of the circuit

• Clauses for each gate, to ensure correct

 computation of bit on outgoing wire(s)

 from the (two) bits on incoming wires

AND

AND

NOT
AND

wi

wk

x1 x2 x3

g3

g1 g2

wj

NOT

wi

wj

AND

wi

wk

wj

AND

AND

NOT

x1 x2 x3

g1 g2

How do we ensure

using our formula that

circuit outputs True ?

g3

Add the unary clause g3

Summary

Many problems that appear different

on the surface can be efficiently

reduced to each other, revealing a

deeper similarity.

Reductions are one of the most versatile

and powerful tools in theoretical computer

science to understand and relate the

computational complexity of problems.

