Finite Automata

DFA
Regular Languages
0^n1^n is not regular
Union Theorem
Kleene’s Theorem
NFA
Application: KMP

Deterministic Finite Automaton

A machine so simple that you can understand it in just one minute

The machine processes a string and accepts it if the process ends in a double circle

The unique string of length 0 will be denoted by ϵ and will be called the empty or null string

Anatomy of a Deterministic Finite Automaton

The singular of automata is automaton.

The alphabet Σ of a finite automaton is the set where the symbols come from, for example (0,1)

The language $L(M)$ of a finite automaton is the set of strings that it accepts
$L(M) = \{x \in \Sigma: M \text{ accepts } x\}$

It’s also called the "language decided/accepted by M".
The Language $L(M)$ of Machine M

$0, 1$

q_0

$L(M) = \text{All strings of 0s and 1s}$

The language of a finite automaton is the set of strings that it accepts

The Language $L(M)$ of Machine M

q_0

q_1

q_0

q_1

What language does this DFA decide/accept?

$L(M) = \{ w \mid w \text{ has an even number of 1s}\}$

Formal definition of DFAs

A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the finite set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

$L(M) = \text{the language of machine } M$

$= \text{set of all strings machine } M \text{ accepts}$

$M = (Q, \Sigma, \delta, q_0, F)$

$Q = \{q_0, q_1, q_2, q_3\}$

$\Sigma = \{0, 1\}$

$q_0 \in Q$ is start state

$F = \{q_1, q_2\}$ is accept states

$\delta : Q \times \Sigma \rightarrow Q$ transition function

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_0</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_0</td>
<td>q_2</td>
</tr>
</tbody>
</table>

EXAMPLE

An automaton that accepts all and only those strings that contain 001

Determine the language recognized by

$L(M) = \{1, 11, 111, \ldots\}$
Determine the language decided by

\[L(M) = \{1, 01\} \]

Membership problem

Determine whether some word belongs to the language.

Regular Languages

A language over \(\Sigma \) is a set of strings over \(\Sigma \).

A language \(L \subseteq \Sigma \) is **regular** if it is recognized by a deterministic finite automaton.

A language \(L \subseteq \Sigma \) is regular if there is a DFA which decides it.

- \(L = \{w | w \text{ contains } 001\} \) is regular.
- \(L = \{w | w \text{ has an even number of } 1s\} \) is regular.

DFA Membership problem

Determine whether some word belongs to the language.

Theorem: The DFA Membership Problem is solvable in linear time.

Let \(M = (Q, \Sigma, \delta, q_0, F) \) and \(w = w_1...w_m \).

Algorithm for DFA \(M \):

1. \(p := q_0 \).
2. For \(i := 1 \) to \(m \) do \(p := \delta(p,w_i) \).
3. If \(p \in F \) then return Yes else return No.

Theorem: Any finite language is regular

Claim 1: Let \(w \) be a string over an alphabet. Then \(\{w\} \) is a regular language.

Proof: By induction on the number of characters.
If \(\{a\} \) and \(\{b\} \) are regular then \(\{ab\} \) is regular.

Claim 2: A language consisting of \(n \) strings is regular.

Proof: By induction on the number of strings. If \(\{a\} \) then \(L \cup \{a\} \) is regular.
Theorem: \(L = \{0^n1^n : n \in \mathbb{N}\} \) is not regular

Notation:

If \(a \in \Sigma \) is a symbol and \(n \in \mathbb{N} \) then \(a^n \) denotes the string \(aaaa...a \) (\(n \) times).

E.g., \(a^3 \) means \(aaa \), \(a^5 \) means \(aaaaa \), \(a^1 \) means \(a \), \(a^0 \) means \(\epsilon \), etc.

Thus \(L = \{\epsilon, 01, 0011, 000111, 00001111, ...\} \).

Wrong Intuition:

For a DFA to decide \(L \), it \textit{seems} like it needs to "remember" how many 0's it sees at the beginning of the string, so that it can "check" there are equally many 1's.

But a DFA has only finitely many states — shouldn't be able to handle arbitrary \(n \).

How to prove a language is NOT regular...

Assume for contradiction there is a DFA \(M \) with \(L(M) = L \).

Argue (usually by Pigeonhole) there are two strings \(x \) and \(y \) which reach the same state in \(M \).

Show there is a string \(z \) such that \(xz \in L \) but \(yz \notin L \).

Contradiction, since \(M \) accepts either both (or neither.)

Theorem: \(L = \{0^n1^n : n \in \mathbb{N}\} \) is not regular

Full proof:

Suppose \(M \) is a DFA deciding \(L \) with, say, \(k \) states.

Let \(r_i \) be the state \(M \) reaches after processing \(0^i \).

By Pigeonhole, there is a repeat among \(r_0, r_1, r_2, ..., r_k \). So say that \(r_s = r_t \) for some \(s \neq t \).

Since \(0^1s \in L \), starting from \(r_s \) and processing \(1^s \) causes \(M \) to reach an accepting state.

Contradiction!
Regular Languages

Definition: A language \(L \subseteq \Sigma \) is regular if there is a DFA which decides it.

Questions:
1. Are all languages regular?
2. Are there other ways to tell if \(L \) is regular?

Equivalence of two DFAs

Definition: Two DFAs \(M_1 \) and \(M_2 \) over the same alphabet are equivalent if they accept the same language: \(L(M_1) = L(M_2) \).

Given a few equivalent machines, we are naturally interested in the smallest one with the least number of states.

Union Theorem

Given two languages, \(L_1 \) and \(L_2 \), define the union of \(L_1 \) and \(L_2 \) as
\[
L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}
\]

Theorem: The union of two regular languages is also a regular language.

Proof (Sketch): Let
\[
M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)
\]
be finite automaton for \(L_1 \) and
\[
M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)
\]
be finite automaton for \(L_2 \).

We want to construct a finite automaton
\[
M = (Q, \Sigma, \delta, q_0, F)
\]
that recognizes \(L = L_1 \cup L_2 \).

Idea: Run both \(M_1 \) and \(M_2 \) at the same time.
Union Theorem

Input: 101001

Accept.
The Regular Operations

Union: \(A \cup B = \{ w | w \in A \text{ or } w \in B \} \)
Intersection: \(A \cap B = \{ w | w \in A \text{ and } w \in B \} \)
Negation: \(\neg A = \{ w | w \notin A \} \)
Reverse: \(A^R = \{ w_1 \ldots w_k | w_k \ldots w_1 \in A \} \)
Concatenation: \(A \cdot B = \{ vw | v \in A \text{ and } w \in B \} \)
Star: \(A^* = \{ w_1 \ldots w_k | k \geq 0 \text{ and each } w_i \in A \} \)

The Kleene closure: \(A^* \)

Star: \(A^* = \{ w_1 \ldots w_k | k \geq 0 \text{ and each } w_i \in A \} \)

From the definition of the concatenation, we define \(A^n, n = 0, 1, 2, \ldots \) recursively
\(A^0 = \{ \epsilon \} \)
\(A^{n+1} = A^n \cdot A \)

\(A^* \) is a set consisting of concatenations of arbitrary many strings from \(A \).
\(A^* = \bigcup_{k=0}^{\infty} A^k \)

Regular Languages Are Closed Under The Regular Operations

An axiomatic system for regular languages

Vocabulary: Languages over alphabet \(\Sigma \)
Axioms: \(\emptyset, \{ a \} \) for each \(a \in \Sigma \)

Deduction rules:
- Given \(L_1, L_2 \), can obtain \(L_1 \cup L_2 \)
- Given \(L_1, L_2 \), can obtain \(L_1 \cdot L_2 \)
- Given \(L \), can obtain \(L^* \)
The Kleene Theorem (1956)

Every regular language over Σ can be constructed from \emptyset and $\{a\}$, $a \in \Sigma$, using only the operations union, concatenation and the Kleene star.

Reverse

Reverse: $A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \}$

How to construct a DFA for the reversal of a language?

The direction in which we read a string should be irrelevant.

If we flip transitions around we might not get a DFA.

Nondeterministic Finite Automaton

There is another type of machine in which there may be several possible next states. Such machines are called nondeterministic.

Nondeterministic finite automaton (NFA)

Nondeterminism can arise from two different sources:
- Transition nondeterminism
- Initial state nondeterminism

Nondeterministic finite automaton (NFA)

An NFA is defined using the same notations $M = (Q, \Sigma, \delta, I, F)$ as DFA except the initial states I and the transition function δ assigns a set of states to each pair $Q \times \Sigma$ of state and input.

Note, every DFA is automatically also NFA.
Find the language recognized by this NFA

\[L = \{0^n, 0^n01, 0^n11 \mid n = 0, 1, 2\ldots\} \]

What does it mean that for an NFA to recognize a string?

Since each input symbol, for \(j > 1 \), takes the previous state to a set of states, we shall use a union of these states.

Find the language recognized by this NFA

\[L = 1^*(01, 1, 10) (00)^* \]

What does it mean that for a NFA to recognize a string?

Here we are going formally define this.

For a state \(q \) and string \(w \), \(\delta'(q, w) \) is the set of states that the NFA can reach when it reads the string \(w \) starting at the state \(q \).

Thus for NFA \(= (Q, \Sigma, \delta, q_0, F) \), the function \(\delta': Q \times \Sigma \rightarrow 2^Q \)

is defined by \(\delta'(q, y x_k) = \cup_{p \in \delta'(q, y)} \delta(p, x_k) \)

Nondeterministic finite automaton

Theorem.
If the language \(L \) is recognized by an NFA, then \(L \) is also recognized by a DFA.

In other words, if we ask if there is a NFA that is not equivalent to any DFA, the answer is No.

Nondeterministic finite automaton

Theorem (Rabin, Scott 1959).
For every NFA there is an equivalent DFA.
For this they won the Turing Award.

CMU prof. emeritus
Rabin Scott
NFA vs. DFA

Advantages.
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks
Acceptance testing slower.
Sometimes algorithms more complicated.

Pattern Matching

Input: Text T of length k, string/pattern P of length n

Problem: Does pattern P appear inside text T?

Naïve method:

\[a_1, a_2, a_3, a_4, a_5, \ldots, a_n \]

Cost: Roughly \(O(nk) \) comparisons

may occur in images and DNA sequences
unlikely in English text

Pattern Matching

Output: Does P occur in T?

Automata solution:

The language P is regular!
There is some DFA \(M_P \) which decides it.
Once you build \(M_P \), feed in T: takes time \(O(n) \).

Build DFA from pattern

The alphabet is \(\{a, b\} \).
The pattern is \(a \ a \ b \ a \ a \ a \ b \ b \).

To create a DFA we consider all prefixes
\(\varepsilon, \ a, \ aa, \ aab, \ aaba, \ aabaa, \ aabaaa, \ aabaaab, \ aabaaabb \)

These prefixes are states. The initial state is \(\varepsilon \). The pattern is the accepting state.

DFA Construction

\[a \ a \ b \ a \ a \ a \ b \ b \]

\[\begin{array}{c}
\ 0 \\
\ 1 \\
\ b \ a \\
\end{array} \]
The Knuth-Morris-Pratt Algorithm (1976)

1970 Cook published a paper about a possibility of existence of a linear time algorithm.

Knuth and Pratt developed an algorithm.

Morris discovered the same algorithm.

Pittsburgh native, CMU professor.

The KMP Algorithm - Motivation

Algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.

When a mismatch occurs, we compute the length of the longest prefix of P that is a proper suffix of P.

Languages
DFAs
The regular operations
0^n1^n is not regular
Union Theorem
Kleene’s Theorem
NFAs
Application: KMP

Here’s What You Need to Know...