

Polynomial Interpolation

Theorem:

Let arbitrary pairs (a_1,b_1) , (a_2,b_2) , ..., (a_{d+1},b_{d+1}) from a field F be given (with all a_i's distinct). Then there always exists a polynomial P(x) of degree \leq d with P(a_i) = b_i for all i.

Lagrange Ir	nterpolation	
a ₁ a ₂ a ₃ a _d a _{d+1}	b ₁ b ₂ b ₃ b _d b _{d+1}	
Want ^{(with deg} such that F	t P(x) ^{ree ≤ d)} P(a _i) = b _i ∀i.	

Lagrange Interpolation					
a ₁	1				
a ₂	0				
a ₃	0				
a _d	0				
a _{d+1}	0				
Car	Can we do this special case?				
23					

a ₁	0				
a ₂	1				
a ₃	0				
a _d	0				
a _{d+1}	0				
What about above data?					
$(x - a_1)(x - a_3)\cdots(x - a_{d+1})$					
$S_2(x) = \frac{1}{(a_2 - a_1)(a_2 - a_3)\cdots(a_2 - a_{d+1})}$					

a ₁	0				
a ₂	0				
a ₃	0				
a _d	0				
a _{d+1}	1				
And for this data,					
$S_{d+1}(x) = \frac{(x-a_1)(x-a_2)\cdots(x-a_d)}{(a_{d+1}-a_1)(a_{d+1}-a_2)\cdots(a_{d+1}-a_d)}$					

Polynomial Interpolation				
a ₁	b ₁			
a ₂	b ₂			
a ₃	b ₃			
a _d	b _d			
a _{d+1}	b _{d+1}			
$P(x) = b_1 \cdot S_1(x) + b_2 \cdot S_2$	$_2(x) + \cdots + b_{d+1} \cdot S_{d+1}(x)$			

The Chinese Remainder Theorem had a very similar proof

Not a coincidence:

algebraically, integers & polynomials share many common properties

Lagrange interpolation is the *exact analog* of Chinese Remainder Theorem for polynomials.

Recall: Interpolation

Let pairs (a_1,b_1) , (a_2,b_2) , ..., (a_{d+1},b_{d+1}) from a field F be given (with all a's distinct).

Theorem:

There is a unique degree d polynomial P(x)satisfying $P(a_i) = b_i$ for all i = 1...d+1.

A linear algebra view

Let $p(x) = p_0 + p_1 x + p_2 x^2 + ... + p_d x^d$ Need to find the coefficient vector $(p_0, p_1, ..., p_d)$

 $p(a) = p_0 + p_1 a + \dots + p_d a^d$ = 1 \cdot p_0 + a \cdot p_1 + a^2 \cdot p_2 + \dots + a^d \cdot p_d

Thus we need to solve:

Representing Polynomials

Let $P(x) \in F[x]$ be a degree-d polynomial. Representing P(x) using d+1 field elements:

- 1. List the d+1 coefficients.
- 2. Give P's value at d+1 different elements.

Rep 1 to Rep 2:	Evaluate at d+1 elements
Rep 2 to Rep 1:	Lagrange Interpolation

Application of Fields/Polynomials (and linear algebra): Error-correcting codes

Sending messages on a noisy channel

Let's say m	essag	es are sequences from $\[\mathbb{F}_{257} \]$
vrxUBN	\Leftrightarrow	118 114 120 85 66 78
		noisy channel
		v 118 114 <mark>104</mark> 85 <mark>35</mark> 78
The chan	nel ma	av corrupt up to k symbols.

The channel may corrupt up to k symbols. How can Alice still get the message across?

Repetition code – noisy channel

Have Alice repeat each symbol 2k+1 times.

118 114 120 85 66 78 becomes

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 78 78 78

noisy channel

 118
 118
 114
 223
 114
 120
 120
 120
 85
 85
 66
 66
 67
 78
 78

 At most k corruptions:
 Bob can take majority of each block.
 Bob can take majority of each block block block.
 Bob can take block block

This is pretty wasteful!

To send message of d+1 symbols and guard against k erasures, we had to send (d+1)(k+1) total symbols.

Can we do better?

This is pretty wasteful!

To send message of d+1 symbols and guard against k erasures, we had to send (d+1)(k+1) total symbols.

To send even 1 message symbol with k erasures, *need* to send k+1 total symbols.

Maybe for d+1 message symbols with k erasures, d+k+1 total symbols can suffice??

Enter polynomials

Say Alice's message is d+1 elements from \mathbb{F}_{257}

118 114 120 85 66 78

Alice thinks of it as the coefficients of a degree-d polynomial $P(x) \in \mathbb{F}_{257}[x]$

 $\mathsf{P}(\mathsf{x}) = 118\mathsf{x}^5 + 114\mathsf{x}^4 + 120\mathsf{x}^3 + 85\mathsf{x}^2 + 66\mathsf{x} + 78$

Now trying to send the degree-d polynomial P(x).

Send it in the Values Representation!

 $P(x) = 118x^5 + 114x^4 + 120x^3 + 85x^2 + 66x + 78$

Alice sends P(x)'s values on d+k+1 inputs: P(1), P(2), P(3), ..., P(d+k+1)

This is called the **Reed–Solomon encoding**.

Send it in the Values Representation!

 $\mathsf{P}(\mathsf{x}) = 118\mathsf{x}^5 + 114\mathsf{x}^4 + 120\mathsf{x}^3 + 85\mathsf{x}^2 + 66\mathsf{x} + 78$

Alice sends P(x)'s values on d+k+1 inputs: P(1), P(2), P(3), ..., P(d+k+1)

> If there are at most k erasures, then Bob still knows P's value on d+1 points.

Bob recovers P(x) using Lagrange Interpolation!

Example

What aboout corruptions/errors

To send message of d+1 symbols and enable correction from up to k errors, repetition code has to send (d+1)(2k+1) total symbols.

To even communicate 1 symbol while enabling recovery from k errors, *need* to send 2k+1 total symbols.

Maybe for d+1 message symbols with k errors, d+2k+1 total symbols can suffice??

Want to send a polynomial of degree-d subject to at most k corruptions.

First simpler problem: Error detection

Suppose we try the same idea

- Evaluate P(X) at d+1+k points
- Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will be unchanged

Example

 $P(X) = 2X^2 + 1$, and k = 1. So I sent P(0)=1, P(1)=3, P(2)=9, P(3)=19 Corrupted email says (1, 4, 9, 19) Choosing (1, 4, 9) will give us Q(X) = X² + 2X + 1

We can now *detect* (up to k) errors

Evaluate P(X) at d+1+k points

Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will be correct

Say P(0), P'(1) , P(2), P(3), P'(4), ..., P(d+k)

Using these d+1 correct values will give P(X)

Using any of the incorrect values will give something else

Quick way of detecting errors

Interpolate first d+1 points to get Q(X)

Check that all other received values are consistent with this polynomial Q(X)

If all values consistent, no errors.

In that case, we know Q(X) = P(X)

else there were errors...

How good is our encoding?

Naïve Repetition: To send d+1 numbers with error detection, sent (d+1)(k+1) numbers

Polynomial Coding: To send d+1 numbers with error detection, sent (d+k+1) numbers

How about error correction?

requires more work

To send d+1 numbers in such a way that we can correct up to k errors, need to send d+1+2k numbers.

Similar encoding scheme

Evaluate degree-d P(x) at d+1+2k points Send P(0), P(1), P(2), ..., P(d+2k) At least d+1+k of these values will be correct Say P(0), P(1), P(2), P(3), P(4), ..., P(d+2k)

Trouble: How do we know which are correct?

Theorem: P(X) is the unique degree-d polynomial that agrees with the received data on at least d+1+k points

Clearly, the original polynomial P(X) agrees with data on d+1+k points (since at most k errors, out of total d+1+2k points)

And if a different degree-d polynomial R(X) did so, R(X) and P(X) would have to agree with each other on d+1 points, and hence be the same.

So any such R(X) = P(X)

Theorem: P(X) is the unique degree-d polynomial that agrees with the received data on at least d+1+k points

Brute-force Algorithm to find P(X):

Interpolate each subset of (d+1) points

Check if the resulting polynomial agrees with received data on d+1+k pts

Takes too much time...

A fast (cubic runtime) algorithm to decode was given by [Peterson, 1960]

Later improvements by Berlekamp and Massey gave practical algorithms

We will now describe the Welch-Berlekamp algorithm to recover the original polynomial when there are k errors

> <u>Aside</u>: Recent research (incl. some of my own) has given algorithms to correct even more than k errors (in a meaningful model)

Reed-Solomon codes

- Message = $(m_0, m_1, ..., m_d) \in F^{d+1}$
- ($F = Z_p$) ($P(a_1), P(a_2) \dots P(a_n)$)
- Polynomiał curve Y = P(X) = m₀+m₁X+...+m_dX^d
 Encoding = eval. at n= d+2k+1 distinct a_i ∈ F
- Encounty eval. at n = 0 + 2k + 1 distinct $a_i \in P$

Efficient recovery?

X

 $a_1 a_2 a_3$

M id

Message uniquely identifiable for up to k errors

Two curves differ in

> 2k positions

Error-correction approach

- Given n = d+2k+1 points (a_i,y_i) where received value y_i ≠ P(a_i) for at most k points.
- If we locate positions of errors, problem then easy by interpolation on correct data

Developing the algorithm

Let Err be subset of k erroneous locations, and define error locator polynomial $E(X) = \prod_{i \in Err} (X - a_i)$

degree(E) = k

We have $E(a_i) y_i = E(a_i) P(a_i)$ for i=1,2,...,n

Let N(X) = E(X) P(X); degree(N) = d + k.

So $E(a_i) y_i - N(a_i) = 0$ for all points (a_i, y_i)

Can we use above to find polynomials E(X) and N(X) (and hence also P(X) = N(X)/E(X))?

Finding N and E

 $E(a_i) y_i - N(a_i) = 0$ for all points (a_i, y_i)

• $E(X) = X^{k} + b_{k-1}X^{k-1} + \dots + b_{0} =$ • $N(X) = c_{d+k}X^{d+k} + \dots + c_{1}X + c_{0}$

Finding E(X) and N(X) is same as finding the unknowns $b_0, b_1, ..., b_{k-1}, c_0, ..., c_{d+k}$

• There are k + (d+k+1) = d+2k+1 = n unknowns

• Also n *linear* equations $E(a_i) y_i - N(a_i) = 0$ in these n unknowns (why are they linear?)

So we can find E(X) and N(X) by solving this linear system and then output N(X)/E(X)

Spurious solutions?

We know coefficients of E(X) and N(X)=E(X)P(X)are a solution, but what if there are other solutions?

Lemma: If $E_1(X)$ and $N_1(X)$ are a different solution, to $E_1(a_i) y_i - N_1(a_i) = 0$ with deg $(E_1) \le k$, deg $(N_1) \le d+k$, then $N_1(X)/E_1(X) = P(X)$

 $\begin{array}{l} Proof: \ Define \ R(X) = E_1(X)P(X) - N_1(X) \\ When \ P(a_i) = y_i, \\ R(a_i) = E_1(a_i)P(a_i) - N_1(a_i) = E_1(a_i)y_i - N_1(a_i) = 0 \end{array}$

So R(X) has at least d+k+1 roots. \Rightarrow R(X) =0

Thus every solution (E_1, N_1) to the linear system yields the same P(X) as the ratio!

Sending messages on a noisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

Sending messages on a noisy channel

Alice wants to send an (n-1)-bit message to Bob.

The channel may flip up to 1 bit.

How can Alice get the message across?

Q1: How can Bob detect if there's been a bit-flip?

Parity-check solution

Alice tacks on a bit, equal to the parity of the message's n-1 bits.

Alice's n-bit 'encoding' always has an even number of 1's.

Bob can detect if the channel flips a bit: if he receives a string with an odd # of 1's.

1-bit error-detection for 2ⁿ⁻¹ messages by sending n bits: optimal! (simple exercise)

Linear Algebra perspective

Let C be the set of strings Alice may transmit.

C is the span of the columns of G.

C is a subgroup of \mathbb{F}_2^n [In linear algebra terms, an (n-1)-dimensional subspace of the vector space \mathbb{F}_2^n]

Solves 1-bit error detection, but not correction If Bob sees z = (1, 0, 0, 0, 0, 0, 0, 0), did Alice send y = (0, 0, 0, 0, 0, 0, 0, 0), or y = (1, 1, 0, 0, 0, 0, 0), or y = (1, 0, 1, 0, 0, 0, 0), or...?

The Hamming(7,4) Code										
On receiving $z \in \mathbb{F}_2^7$, Bob computes Hz.										
H =	0 0 1	0 1 0	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1			
If no errors, $z = Gx$, so $Hz = HGx = 0$.										
If jth coordinate corrupted, $z = Gx+e_j$.										
hen Hz = H(Gx+e _i) = HGx + He _i										
= $He_j = (j'th column of H) = binary rep. of j$										
sob knows where the error is, can recover msg!										

Sending longer messages: General Hamming Code

By sending n = 7 bits, Alice can communicate one of 16 messages, guarding against 1 error.

This scheme generalizes: Let $n = 2^{r}-1$, take H to be the $rx(2^{r}-1)$ matrix whose columns are the numbers $1...2^{r}-1$ in binary.

There are $2^{n-r} = 2^n/(n+1)$ solutions $z \in \{0,1\}^n$ to the check equations Hz = 0.

These are *codewords* of the Hamming code of length n

Summary: Hamming code

To *detect* 1 bit error in n transmitted bits:

- one parity check bit suffices,
- so can communicate 2ⁿ⁻¹ messages by sending n bits.

To correct 1 bit error in n transmitted bits:

- for $n = 2^r 1$, r check bits suffice
- so can communicate 2ⁿ/(n+1) messages by sending n bits

Fact (left as exercise): This is optimal!

Study Guide

Polynomials:

Lagrange Interpolation Parallel with Chinese Remainderin

Reed-Solomon codes:

Erasure correction via interpolation Error correction

Hamming codes: Correcting 1 bit error