

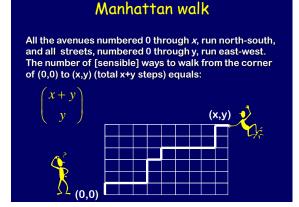
(1+x)ⁿ is the "generating function"
for the sequence

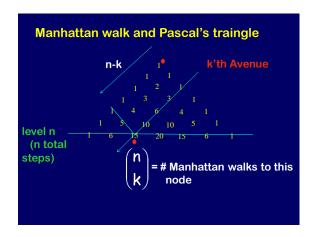
(n)
k=0,1,...,n

Generating functions are a formal algebraic representation for (infinite) sequences

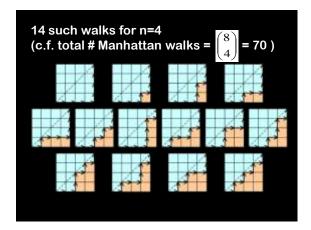
Often , surprisingly powerful representation to understand the sequence!

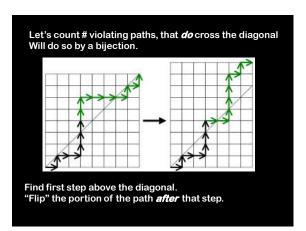
Manhattan Walks Brief Recap

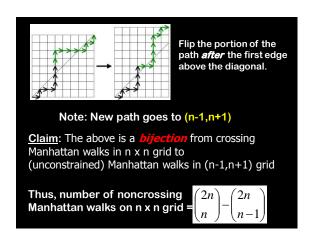




Noncrossing Manhattan walk What if we require the Manhattan walk to never cross the diagonal? How many ways can we walk from (0,0) to (n,n) along the grid subject to this rule?







How many sequences of balanced paranthesis with n ('s and n 1)'s are there?

Answer:

$$c_n = {2n \choose n} - {2n \choose n-1} = \frac{1}{n+1} {2n \choose n}$$

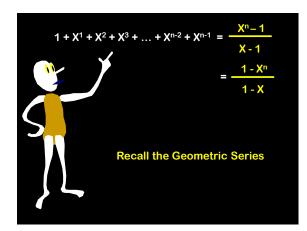
c_n is the **n'th** Catalan number.

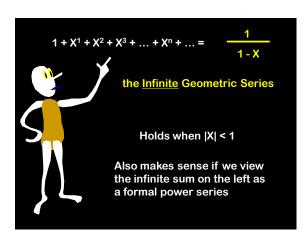
Feature Presentation

Generating Functions

Today we hope to answer:

What is a generating function, and why it is a powerful tool in one's counting arsenal.





$$P(X) = 1 + X^{1} + X^{2} + X^{3} + ... + X^{n} + ...$$

$$-X * P(X) = -X^{1} - X^{2} - X^{3} - ... - X^{n} - X^{n+1} - ...$$

$$(1-X) P(X) = 1$$

$$\Rightarrow P(X) = \frac{1}{1-X}$$

What is a Generating Function?

Just a particular representation of sequences... $\langle 1,1,1,\ldots \rangle$

$$1 + 1x + 1x^2 + \dots = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

In general, when a_n is a sequence...

$$\sum_{n=0}^{\infty} a_n x^n$$

Formal Power Series

$$P(X) = \sum_{n=0}^{\infty} a_n X^n$$

There are no worries about convergence issues.

This is a purely syntactic object.

Formal Power Series

$$P(X) = \sum_{i=0}^{\infty} a_i X^i$$

If you want, think of as the infinite vector $V = \langle a_0, a_1, a_2, ..., a_n, ... \rangle$

But, as you will see, thinking of as a "polynomial" is very natural.

...And why would I use one?

They're fun and powerful!

Solving (impossible looking) counting problems

Solving recurrences precisely

Proving identities

In Graham-Knuth-Patashnik's text "Concrete Mathematics: A Foundation for Computer Science", generating functions are described as "the most mportant idea in this whole book."

Generating functions transform problems about sequences into problems about functions, allowing us to put the piles of machinery available for manipulating functions to work for understanding sequences

Operations on Generating Functions

$$A(X) = a_0 + a_1 X + a_2 X^2 + ...$$

 $B(X) = b_0 + b_1 X + b_2 X^2 + ...$

adding them together

$$(A+B)(X) = (a_0+b_0) + (a_1+b_1) X + (a_2+b_2) X^2 + ...$$

like adding the vectors position-wise $\langle 4,2,3,... \rangle + \langle 5,1,1,.... \rangle = \langle 9,3,4,... \rangle$

Operations on Generating Functions

$$A(X) = a_0 X^0 + a_1 X^1 + a_2 X^2 + ...$$

multiplying by X

$$X * A(X) = 0 X^{0} + a_{0} X^{1} + a_{1} X^{2} + a_{2} X^{3} + ...$$

like shifting the vector entries SHIFT<4,2,3,...>=<0,4,2,3,...>

Example

Example: Sto

 $\begin{array}{lll} V := <1,0,0,...>; & V = <1,0,0,0,...> \\ & V = <1,1,0,0,...> \\ \text{Loop n times} & V = <1,2,1,0,...> \\ & V := V + \text{SHIFT}(V); & V = <1,3,3,1,...> \end{array}$

V = nth row of Pascal's triangle

Example

Example:

$$V := <1,0,0,...>;$$
 $P_{v} := 1;$

$$V := V + SHIFT(V); \qquad P_V := P_V^*(1+X);$$

Example

Example:

$$P_V = (1 + X)^n$$

V = nth row of Pascal's triangle

As expected, the coefficients of P_V give the nth row of Pascal's triangle

To repeat...

Given a sequence $V = < a_0, a_1, a_2, ..., a_n, ... >$

associate a formal power series with it

$$P(X) = \sum_{i=0}^{\infty} a_i X^i$$

This is the "generating function" for V

Fibonaccis

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$

i.e., the sequence <0,1,1,2,3,5,8,13...>

is represented by the power series

$$0 + 1X^{1} + 1X^{2} + 2X^{3} + 3X^{4} + 5X^{5} + 8X^{6} + ...$$

Two Representations

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$

$$A(X) = 0 + 1X^{1} + 1X^{2} + 2X^{3} + 3X^{4} + 5X^{5} + 8X^{6} + ...$$

Can we write A(X) more succinctly?

$$\begin{aligned} \mathsf{A}(\mathsf{X}) &= \mathsf{F}_0 + \mathsf{F}_1 \, \mathsf{X}^1 + \mathsf{F}_2 \, \mathsf{X}^2 + \mathsf{F}_3 \, \mathsf{X}^3 + \ldots + \mathsf{F}_n \, \mathsf{X}^n + \ldots \\ &= \mathsf{X}^1 + (\mathsf{F}_1 + \mathsf{F}_0) \mathsf{X}^2 + (\mathsf{F}_2 + \mathsf{F}_1) \, \mathsf{X}^3 + \ldots + (\mathsf{F}_{n-1} + \mathsf{F}_{n-2}) \, \mathsf{X}^n + \ldots \\ &= X + \sum_{m=1}^{\infty} F_m X^{m+1} + \sum_{m=0}^{\infty} F_m X^{m+2} \\ &= X + X(A(X) - F_0) + X^2 A(X) \\ &= X + X A(X) + X^2 A(X) \end{aligned}$$

$$= X + X A(X) + X^2 A(X)$$

$$\mathsf{A}(\mathsf{X}) = \frac{\mathsf{X}}{(\mathsf{1} - \mathsf{X} - \mathsf{X}^2)}$$

G.F for Fibonaccis

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$

has the generating function

$$A(X) = \frac{X}{(1 - X - X^2)}$$

i.e., the coefficient of X^n in A(X) is F_n

$$\begin{array}{c} X+X^2+2X^3+3X^4+5X^5+8X^6\\ 1-X-X^2 & X\\ & \underline{-(X-X^2-X^3)}\\ & & X^2+X^3\\ & \underline{-(X^2-X^3-X^4)}\\ & & 2X^3+X^4\\ & \underline{-(2X^3-2X^4-2X^5)}\\ & & 3X^4+2X^5\\ & \underline{-(3X^4-3X^5-3X^6)}\\ & & \underline{-(5X^5-5X^6-5X^7)}\\ & & 8X^6+5X^7\\ & & -(8X^6-8X^7-8X^8)\\ \end{array}$$

Two representations of the same thing...

$$F_0 = 0, F_1 = 1,$$

 $F_n = F_{n-1} + F_{n-2}$ $A(X) = \frac{X}{(1 - X - X^2)}$

Closed form expression for F_n ?

$$F_0 = 0, F_1 = 1,$$

 $F_n = F_{n-1} + F_{n-2}$ $A(X) = \frac{X}{(1 - X - X^2)}$
let's factor $(1 - X - X^2)$

$$(1 - X - X^2) = (1 - \varphi_1 X)(1 - \varphi_2 X)$$

where
$$\phi_1 = \frac{1 + \sqrt{5}}{2}$$

$$\varphi_2 = \frac{1 - \sqrt{5}}{2}$$

Simplify, simplify...

$$F_0 = 0, F_1 = 1,$$

 $F_n = F_{n-1} + F_{n-2}$ $A(X) = \frac{X}{(1 - \phi_1 X)(1 - \phi_2 X)}$

some elementary algebra omitted...*

$$A(X) = \frac{1}{\sqrt{5}} \frac{1}{(1 - \phi_1 X)} + \frac{-1}{\sqrt{5}} \frac{1}{(1 - \phi_2 X)}$$

*you are not allowed to say this in your answers...

$$A(X) = \frac{1}{\sqrt{5}} \frac{1}{(1 - \phi_1 X)} + \frac{-1}{\sqrt{5}} \frac{1}{(1 - \phi_2 X)}$$

$$\frac{1}{(1 - \phi_1 X)} = 1 + \phi_1 X + \phi_1^2 X^2 + \dots + \phi_1^n X^n + \dots$$

$$\frac{1}{1 - Y}$$
the Infinite Geometric Series

$$A(X) = \frac{1}{\sqrt{5}} \frac{1}{(1 - \phi_1 X)} + \frac{-1}{\sqrt{5}} \frac{1}{(1 - \phi_2 X)}$$

$$\frac{1}{(1 - \phi_1 X)} = 1 + \phi_1 X + \phi_1^2 X^2 + \dots + \phi_1^n X^n + \dots$$

$$\frac{1}{(1 - \phi_2 X)} = 1 + \phi_2 X + \dots + \phi_2^n X^n + \dots$$

$$\Rightarrow \text{ the coefficient of } X^n \text{ in } A(X) \text{ is...}$$

$$\frac{1}{\sqrt{5}} \phi_1^n + \frac{-1}{\sqrt{5}} \phi_2^n$$

Closed form for Fibonaccis

$$F_n = \frac{1}{\sqrt{5}} \varphi^n + \frac{-1}{\sqrt{5}} (-1/\varphi)^n$$

where $\varphi = \frac{1 + \sqrt{5}}{2}$

"golden ratio"

Closed form for Fibonaccis

$$F_n = \frac{1}{\sqrt{5}} \varphi^n + \frac{-1}{\sqrt{5}} (-1/\varphi)^n$$

 $F_n =$ closest integer to $\frac{1}{\sqrt{5}} \varphi^n$

To recap...

Given a sequence $V = < a_0, a_1, a_2, ..., a_n, ... >$

associate a formal power series with it

$$P(X) = \sum_{i=0}^{\infty} a_i X^i$$

This is the "generating function" for V

We just used this for solving the Fibonacci recurrence...

Multiplication

$$A(X) = a_0 + a_1 X + a_2 X^2 + ...$$

 $B(X) = b_0 + b_1 X + b_2 X^2 + ...$

multiply them together

$$(A*B)(X) = (a_0*b_0) + (a_0b_1 + a_1b_0) X$$

$$+ (a_0b_2 + a_1b_1 + a_2b_0) X^2$$

$$+ (a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0) X^3$$

$$+ \dots$$

seems a bit less natural in the vector representation
(it's called a "convolution" there)

Multiplication: special case

$$A(X) = a_0 + a_1 X + a_2 X^2 + ...$$

Special case: $B(X) = 1 + X + X^2 + ... = \frac{1}{1-X}$

multiply them together

$$(A*B)(X) = a_0 + (a_0 + a_1) X + (a_{0+}a_1 + a_2) X^2 + (a_0 + a_1 + a_2 + a_3) X^3 + ...$$

it gives us partial sums!

For example...

Suppose A(X) = 1 + X + X² + ... =
$$\frac{1}{1-X}$$

and B(X) = 1 + X + X² + ... = $\frac{1}{1-X}$

then $(A*B)(X) = 1 + 2X + 3X^2 + 4X^3 + ...$

$$=\frac{1}{1-X}*\frac{1}{1-X}=\frac{1}{(1-X)^2}$$

Generating function for integers <0,1,2,3,4...>

What happens if we again take prefix sums?

Take
$$1 + 2X + 3X^2 + 4X^3 + \dots = \frac{1}{(1-X)^2}$$

multiplying through by 1/(1-X)

$$\Delta_1 + \Delta_2 X^1 + \Delta_3 X^2 + \Delta_4 X^3 + \dots = \frac{1}{(1-X)^3}$$

Generating function for the triangular numbers!

What's the pattern?

$$<1,1,1,1,...> = \frac{1}{1-X}$$

$$<1,2,3,4,...> = \frac{1}{(1-X)^2}$$

$$<\Delta_1,\Delta_2,\Delta_3,\Delta_4,...> = \frac{1}{(1-X)^3}$$

??? =
$$\frac{1}{(1-X)}$$

What's the pattern?

What's the pattern?

What's the pattern?

$$\begin{bmatrix}
0 \\ 0
\end{bmatrix}, \begin{bmatrix}
1 \\ 0
\end{bmatrix}, \begin{bmatrix}
2 \\ 0
\end{bmatrix}, \begin{bmatrix}
3 \\ 0
\end{bmatrix}, \dots = \frac{1}{1-X}$$

$$\begin{bmatrix}
1 \\ 1
\end{bmatrix}, \begin{bmatrix}
2 \\ 1
\end{bmatrix}, \begin{bmatrix}
3 \\ 1
\end{bmatrix}, \begin{bmatrix}
4 \\ 1
\end{bmatrix}, \dots = \frac{1}{(1-X)^2}$$

$$\begin{bmatrix}
2 \\ 2
\end{bmatrix}, \begin{bmatrix}
3 \\ 2
\end{bmatrix}, \begin{bmatrix}
4 \\ 2
\end{bmatrix}, \begin{bmatrix}
5 \\ 2
\end{bmatrix}, \dots = \frac{1}{(1-X)^k}$$

$$???? = \frac{1}{(1-X)^k}$$

What's the pattern?

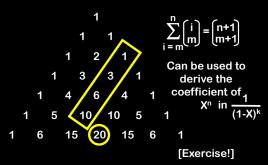
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \dots = \frac{1}{1-X}$$

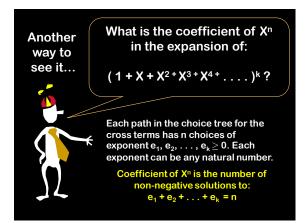
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \dots = \frac{1}{(1-X)^2}$$

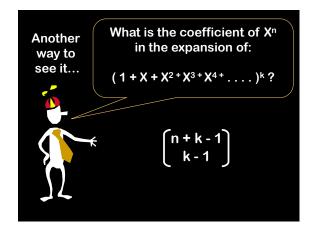
$$\begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \dots = \frac{1}{(1-X)^2}$$

$$\sum_{n=0}^{\infty} \begin{bmatrix} n+k-1 \\ k-1 \end{bmatrix} \chi_n = \frac{1}{(1-X)^2}$$

From last lecture: summing on avenues







The Convolution Rule

$$A(X) = a_0 + a_1 X + a_2 X^2 + ...$$
 $B(X) = b_0 + b_1 X + b_2 X^2 + ...$

GF for selecting items from set \boldsymbol{A} GF for selecting items from set \boldsymbol{B}

A and B disjoint

Suppose there is a bijection between n-element selections from $A \cup B$ and ordered pairs of selections from A and B containing total of n els.

Then, number of ways to select n items total from $\mathbf{A} \cup \mathbf{B} = a_0 b_{n+} a_1 b_{n-1} + a_2 b_{n-2} + \dots + a_n b_0$

GF for selecting items from disjoint union $\mathbf{A} \cup \mathbf{B}$ = $\mathbf{A}(\mathbf{X}) \mathbf{B}(\mathbf{X})$

Another useful operation: Differentiation

$$A(X) = a_0 + a_1 X + a_2 X^2 + ...$$
differentiate it...
$$A'(X) = a_1 + 2a_2 X + 3a_3 X^2 ...$$

$$A'(X) = \sum_{i=0}^{\infty} (i+1)a_{i+1} X^i$$

$$X A'(X) = \sum_{i=0}^{\infty} ia_i X^i$$

Example of differentiation in action

$$\sum_{n=0}^{\infty} {n+k-1 \choose k-1} X^n = \frac{1}{(1-X)^k}$$

$$\frac{1}{(1-X)^k} = \frac{1}{(k-1)!} \frac{d^{k-1}}{dx^{k-1}} \left(\frac{1}{1-X}\right)$$

$$= \frac{1}{(k-1)!} \sum_{\ell=\lfloor k-1 \rfloor} \ell(\ell-1) \cdots (\ell-(k-2)) X^{\ell-(k-1)}$$

$$= \sum_{n=0}^{\infty} \frac{(n+k-1)(n+k-2) \cdots (n+1)}{(k-1)!} X^n$$

$$= \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} X^n.$$

Differentiation in use

Exercise: Prove that the generating function for squares, i.e.,

the sequence $a_n = n^2$, n=0,1,2... equals

$$\frac{x(1+x)}{(1-x)^3}$$

Hint: Use differentiation + shifting twice

Integration

 $A(X) = a_0 + a_1 X + a_2 X^2 + ...$

Integrating both sides

$$\int_{0}^{X} A(t)dt = a_{0}X + a_{1}\frac{X^{2}}{2} + a_{2}\frac{X^{3}}{3} + \cdots$$

$$\frac{1}{X}\int_{0}^{X} A(t)dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1}X^{n}$$

$$\frac{1}{X} \int_0^X A(t)dt = \sum_{n=0}^\infty \frac{a_n}{n+1} X^n$$

Example

Evaluate the sum

$$\sum_{i=0}^{n} \binom{n}{i} \frac{1}{(i+1)}$$

$$\sum_{i=0}^{n} \frac{\binom{n}{i}}{i+1} X^{i} = \frac{1}{X} \int_{0}^{X} (1+t)^{n} dt = \frac{(1+X)^{n+1}-1}{X(n+1)}$$

Substituting X=1, answer =

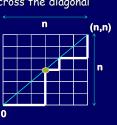
I like Catalan!

 C_n = # ways to walk from (0,0) to (n,n) along the grid so that we never cross the diagonal

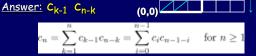
The bijection was clever but where did it come from?

A more systematic approach?

Recurrence + generating functions!



A recurrence $C_n = \#$ Manhattan walksfrom (0,0) to (n,n) that never cross the diagonal (define $c_0=1$). The walk must hit the diagonal at least once (n,n) (perhaps only at the end). # walks that hit the diagonal at (k,k) for the first time? n $(1 \le k \le n)$



Catalan generating function

Define
$$C(x) = \sum_{n=0}^{\infty} c_n x^n$$

Coefficient of / xⁿ⁻¹ in C(x)²

$$c_n = \sum_{k=1}^{n} c_{k-1}c_{n-k} = \sum_{i=0}^{n-1} c_i c_{n-1-i}$$
 for $n \ge 1$

So
$$C(x) = x C(x)^2$$

Hmm...

Be careful about c₀ (base cases)

Correct equation: $C(x) = 1 + x C(x)^2$

Catalan generating function

$$C(x) = \sum_{n=0}^{\infty} c_n x^n$$

$$x C(x)^2 - C(x) + 1 = 0$$

Solving the quadratic:
$$C(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

Using this, one can calculate

$$c_n = \frac{1}{n+1} {2n \choose n}$$

Define D(x) =
$$2x C(x) = 1 - (1-4x)^{1/2} = \sum d_n x^n$$

$$d_n = \frac{D^{(n)}(0)}{n!} = \frac{2^n \cdot 1 \cdot 3 \cdot 5 \cdots (2n-5) \cdot (2n-3)}{n!}$$

$$c_n = d_{n+1}/2$$

Another take on Catalan GF

Let E(X) be the GF for *super non-crossing*Manhattan walks on n x n grids that
never touch the diagonal (except at endpoints)

Fact 1: E(X) = X C(X)

Fact 2: $C(X) = 1 + E(X) + (E(X))^2 + (E(X))^3 + ...$

Together these imply

$$C(X) = \frac{1}{1 - XC(X)}$$

Now to a seemingly over the top counting problem...

Suppose that we want to fill a basket with fruit, but we impose on ourselves some very quirky issistraints:

-). The number of apples must be a multiple of free (an apple a [week]day...)
- 2. The number of bananas must be even (some before 15-251 on Tues/Thurs...)
- 2. We can take at most four stranges (too scirlic...).
- 4. There can be at most one pow (get musty too fast...)

Let **c**_n = number of ways to pick exactly **n** fruits.

$$E.g., c_5 = 6$$

apples	m	n	n	-	· tr	
arbitro	- 11	- 11	-11	111	- 11	
butanas	4	+	2	12	0	- 0
eranges	1	0.	2	16	4	0.
24100	11	T	T	- 0	1	-0

What is a closed form for c_n ?

Recall Convolution Rule

So if A(x), B(x), O(x) and P(x) are the generating functions for the number of ways to fill baskets using only one kind of fruit

the generating function for number of ways to fill basket using any of these fruits is given by C(x) = A(x)B(x)O(x)P(x) Suppose that we want to fill a basket with finit, but we impose on ounselves onne very quicky constraints.

1. The number of apples must be a multiple of five (an apple a [week]day...)

2. The number of bananas must be even (some before 15-251 on Turn/Thurs...)

- 2. We can take at most four oranges (too acidic...).
- 4. There can be at most one year (get musty too fast...).

Suppose we only pick bananas

b_n = number of ways to pick n fruits, only bananas.

B(x) = 1 +
$$x^2$$
 + x^4 + x^6 + ... = $\frac{1}{1-X^2}$

Suppose that we want to fill a basist with fruit, but we impose on ourselves some very quicky constraints:

- The number of upplies must be a multiple of five (an apple a [week]day...)
- 2. The number of hammas must be even motor before 15-251 on Turn/Thorn...)
- 3. We can take at most four oranges (too scidic...).
- 4. There can be at most one year (get muchy too fast...).

Suppose we only pick apples

 a_n = number of ways to pick n fruits, only apples.

$$A(x) = 1 + x^5 + x^{10} + x^{15} + \dots = \frac{1}{1 - X^5}$$

Suppose that we want to fill a basket with fruit, but we impose on ourselves some very quicky

-). The number of apples must be a multiple of five (on apple a [week]day...)
- 2. The number of bananse must be even (enten before 15-251 on Ture/Thurs...)
- 3. We can take at most four oranges (too acidic...).
- 4. There can be at most one year (get musky too fast...)

Suppose we only pick oranges

o_n = number of ways to pick n fruits, only oranges.

$$O(x) = 1 + x + x^2 + x^3 + x^4 = \frac{1-X^3}{1-X}$$

Suppose that we want to fill a basket with fruit, but we impose on ound/we some very quicky constraints:

-). The number of apples must be a multiple of free (an apple a [week]day...)
- 2. The number of bananas must be even (notes) before 15-251 on Turn/Thurs...)
- 2. We can take at most four oranges (too aculic...).

There can be at most one year (get musty too fast...).

Suppose we only pick pears

 p_n = number of ways to pick n fruits, only pears.

$$P(x) = 1 + x = \frac{1-X^2}{1-X}$$

Suppose that we want to fill a basket with fruit, but we impose on ourselves owne very quicky constraints.

-). The number of apples must be a multiple of free (an apple a [week]day...)
- 2. The number of bananse must be even (enten before 15-251 on Ture/Thurs...)
- 3. We can take at most four oranges (too acidic...).
- 4. There can be at most one pow (get mushy too fast...)

Let $\frac{c_n}{n}$ = number of ways to pick exactly $\frac{1}{n}$ fruits of any type

$$\sum c_n x^n = A(x) B(x) O(x) P(x)$$

$$= \frac{1}{1-X^5} \frac{1}{1-X^2} \frac{1-X^5}{1-X} \frac{1-X^2}{1-X} = \frac{1}{(1-X)}$$

Suppose that we want to fill a basket with fruit, but we impose on ourselves owne very quicky constraints:

- 1. The number of apples must be a multiple of five (an apple a [week]day...)
- 2. The number of bananse must be even (some before 15-251 on Ture/Thurs...)
- 2. We can take at most four oranges (too scidic...).
- There can be at most one year (get musty too fast...)

Let c_n = number of ways to pick exactly n fruits of any type

 c_n is coefficient of X^n in $\frac{1}{(1-X)^2}$

$$c_n = n+1$$
.

Another recurrence example

$$d_n = 2d_{n-1} + 3d_{n-2} \qquad d_0 = 0 \quad d_1 = 1$$

Goal: derive a closed form using generating functions.

Let
$$D(x) = \sum_{n=0}^{\infty} d_n x^n$$

Proceeding as in Fibonacci example...

A closed form

$$D(x) = x + 2xD(x) + 3x^2D(x)$$

$$(1 - 2x - 3x^2)D(x) = x$$

$$D(x) = \frac{x}{1 - 2x - 3x^2}$$

Simplifying to retrieve d_n

$$D(x) = \sum_{n=0}^{\infty} d_n x^n = \frac{x}{1 - 2x - 3x^2} = \frac{-1}{4(1+x)} + \frac{1}{4(1-3x)}$$

Factorize denominator to break it into smaller pieces

$$\frac{x}{1-2x-3x^2} = \frac{x}{(1+x)(1-3x)} = \frac{A}{1+x} + \frac{B}{1-3x}$$

$$x = (1-3x)A + (1+x)B$$

$$1 = -3A + B$$

$$0 = A + B$$

$$A = \frac{-1}{4}$$

$$B = \frac{1}{4}$$

Retrieving d_n

$$D(x) = \sum_{n=0}^{\infty} d_n x^n = \frac{x}{1 - 2x - 3x^2} = \frac{-1}{4(1+x)} + \frac{1}{4(1-3x)}$$

$$= \frac{-1}{4} \sum_{n=0}^{\infty} (-x)^n + \frac{1}{4} \sum_{n=0}^{\infty} (3x)^n$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad \qquad = \sum_{n=0}^{\infty} \frac{1}{4} \left((-1)^{n+1} + 3^n \right) x^n$$

$$\frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n$$

$$d_n = \frac{1}{4} \left((-1)^{n+1} + 3^n \right)$$

$$\frac{1}{1-(3x)} = \sum_{n=0}^{\infty} (3x)^n$$

Some Common GFs

Sequence	Generating Function			
$\langle 1, 1, 1, \dots \rangle$	$\frac{1}{1-x}$			
$\langle 1, 2, 4, \dots \rangle$	$\frac{1}{1-2x}$			
$\langle 1, 2, 3, \dots \rangle$	$\frac{1}{(1-x)^2}$			
$,\overline{1,1,2,3,\dots angle}$	$\frac{x}{1 - x - x^2}$			

Know...

Formal Power Series

Basic operations on Formal Power Series

Solving recurrences using generating functions (handle base cases carefully!)

Solving G.F. to get closed form

G.F.s for common sequences

Here's What
You Need to Prefix sums using G.F.s

Using G.F.s to solve counting problems