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Counting III:   
Generating functions 

Great Theoretical Ideas In Computer Science 

V. Guruswami CS 15-251       Fall 2014 

Lecture 7 September 16, 2014 Carnegie Mellon University 
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Generating functions are a formal  

algebraic view for (infinite) sequences 
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Generating functions are a formal  

algebraic representation for (infinite) sequences 

(1+x)n  is the “generating function” 

for the sequence 
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Often , surprisingly powerful representation to  

understand the sequence! 

Manhattan Walks  

Brief Recap 

Manhattan walk 

All the avenues numbered 0 through x, run north-south, 

and all  streets, numbered 0 through y, run east-west.  

The number of  [sensible] ways to walk from the corner 

of  (0,0) to (x,y) (total x+y steps) equals: 
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What if we require the Manhattan walk to  
never cross the diagonal?  
 
How many ways can we walk from (0,0) to 
(n,n) along the grid subject to this rule? 

Noncrossing Manhattan walk 

n 

n 

(n,n) 

(0,0) 

 

14 such walks for n=4 

(c.f. total # Manhattan walks =          = 70 ) 
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Let’s count # violating paths, that do cross the diagonal 

Will do so by a bijection. 

Find first step above the diagonal.  

“Flip” the portion of  the path after  that step.  

Flip the portion of  the  

path after  the first edge 

above the diagonal.  

Note: New path goes to (n-1,n+1) 

Claim: The above is a bijection from crossing  

Manhattan walks in n x n grid to  
(unconstrained) Manhattan walks in (n-1,n+1) grid 
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nThus, number of  noncrossing  

Manhattan walks on n x n grid = 

How many sequences of balanced paranthesis 
with n (’s and n 1)’s are there? 

cn  is the n’th Catalan number. 

Answer: 

Generating Functions 

Feature Presentation 

http://en.wikipedia.org/wiki/File:Catalan_number_4x4_grid_example.svg
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What is a generating function, and  

why it is a powerful tool in  

one’s counting arsenal. 

Today we hope to answer: 

 1 + X1 + X2 + X3 + … + Xn-2 + Xn-1  =  
X - 1  

Xn – 1 

Recall the Geometric Series 

1 - X  

1 - Xn 
= 

 1 + X1 + X2 + X3 + … + Xn + … =  
1 - X  

   1 

the Infinite Geometric Series 

Also makes sense if  we view 

the infinite sum on the left as  

a formal power series 

Holds when |X| < 1 

1 + X1 + X2 + X3 + … + Xn + … 

1 - X  

   1 

- X1 -  X2 -  X3 - …  -  Xn -  Xn+1 - … 

(1- X) P(X) =  

 P(X) =  

-X * P(X) =  

P(X) = 

1 

What is a Generating Function? 

Just a particular 

representation of  sequences…  

In general, when        is a sequence… 

Formal Power Series 

 
n = 0 

 

anXn P(X) = 

There are no worries about convergence issues. 

 

This is a purely syntactic object. 
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Formal Power Series 

 
i = 0 

 

aiX
i P(X) = 

If  you want, think of  as the infinite vector 

V = < a0, a1, a2, ..., an, … > 

 

But, as you will see, thinking of  as a  

“polynomial” is very natural. 

…And why would I use one? 

They're fun and powerful ! 

Solving recurrences precisely 

Solving  (impossible looking) counting problems 

Proving identities 

 In Graham-Knuth-Patashnik’s  text  “Concrete 

Mathematics: A Foundation for Computer Science”, 
generating functions are described as  

“the most mportant idea in this whole book.” 

Generating functions transform problems  
about sequences into problems about functions, 

allowing us to put the piles of machinery available  
for manipulating functions to work for  

understanding sequences 

Operations on Generating Functions 

A(X) = a0 + a1 X + a2 X2 + …  

B(X) = b0 + b1 X + b2 X2 + …  

adding them together 

(A+B)(X) = (a0+b0) + (a1+b1) X + (a2+b2) X2 + …  

like adding the vectors position-wise 

<4,2,3,…> + <5,1,1,….> = <9,3,4,…> 

Operations on Generating Functions 

A(X) = a0 X0 + a1 X1 + a2 X2 + …  

multiplying by X 

X * A(X) = 0 X0 + a0 X1 + a1 X2 + a2 X3 + …  

like shifting the vector entries 

SHIFT<4,2,3,…> = <0,4,2,3,…> 

Example 

Example: 

V = nth row of  Pascal’s triangle 

Store: 

V = <1,0,0,0,…> 

V = <1,1,0,0,…> 

V = <1,2,1,0,…> 

V = <1,3,3,1,…> 

V := <1,0,0,…>; 

 

Loop n times 

    V := V + SHIFT(V); 
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Example: 

V := <1,0,0,…>; 

 

Loop n times 

    V := V + SHIFT(V); 

V = nth row of  Pascal’s triangle 

PV := 1; 

PV := PV*(1+X); 

Example 

Example: 

V := <1,0,0,…>; 

 

Loop n times 

    V := V + SHIFT(V); 

V = nth row of  Pascal’s triangle 

Example 

PV = (1+ X)n 

As expected, the coefficients of  PV give  

the nth row of  Pascal’s triangle 

To repeat… 

 
i = 0 

 

aiX
i P(X) = 

Given a sequence V = < a0, a1, a2, ..., an, … > 

associate a formal power series with it 

This is the “generating function” for V 

Fibonaccis 

i.e., the sequence <0,1,1,2,3,5,8,13…> 

is represented by the power series 

0 + 1X1 + 1X2 + 2 X3 + 3 X4 + 5 X5 + 8 X6 +… 

F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2 

Two Representations 

A(X) = 0 + 1X1 + 1X2 + 2 X3 + 3 X4 + 5 X5 + 8 X6 +… 

F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2 

Can we write A(X) more succinctly? 

A(X) = F0 + F1 X1 + F2 X2 + F3 X3 + … + Fn Xn +… 

= X1 + (F1 + F0)X2 + (F2+F1) X3 + … + (Fn-1 +Fn-2) Xn +… 

(1 – X – X2) 

X 

A(X) =  
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G.F for Fibonaccis 

F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2 

(1 – X – X2) 

X 

A(X) =  

has the generating function  

i.e., the coefficient of  Xn in A(X) is Fn 

1 – X – X2 X 

X2 + X3 

-(X – X2 – X3) 

X 

2X3 + X4 

 

-(X2 – X3 – X4) 

+ X2 

-(2X3 – 2X4 – 2X5) 

+ 2X3 

3X4 + 2X5 

+ 3X4 

-(3X4 – 3X5 – 3X6) 

5X5 + 3X6 

+ 5X5 

-(5X5 – 5X6 – 5X7) 

8X6 + 5X7 

+ 8X6 

-(8X6 – 8X7 – 8X8) 

Two representations 

of  the same thing… 

F0 = 0, F1 = 1,  

Fn = Fn-1 + Fn-2 (1 – X – X2) 

X 

A(X) =  

Closed form expression for Fn? 

F0 = 0, F1 = 1,  

Fn = Fn-1 + Fn-2 (1 – X – X2) 

X 

A(X) =  

let’s factor (1 – X – X2) 

(1 – X – X2) = (1 – φ1 X)(1 – φ2 X) 

φ2 = 1 - √5 

2 

where φ1 = 1 + √5 

2 

Simplify, simplify… 

F0 = 0, F1 = 1,  

Fn = Fn-1 + Fn-2 

X 

A(X) =  

(1 – φ1X)(1 – φ2X) A(X) =  

1 

(1 – φ1X) 

1 

(1 – φ2X) √5 

1 

√5 

-1 
+ 

some elementary algebra omitted…* 

*you are not allowed to say this in your answers… 

A(X) =  
1 

(1 – φ1X) 

1 

(1 – φ2X) √5 

1 

√5 

-1 
+ 

1 

(1 – φ1X) 
= 1 + φ1 X + φ1

2 X2 + … + φ1
n Xn + … 

 = 1 + Y1 + Y2 + Y3 + … + Yn + …   
1 - Y  

   1 

the Infinite Geometric Series 
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A(X) =  
1 

(1 – φ1X) 

1 

(1 – φ2X) √5 

1 

√5 

-1 
+ 

1 

(1 – φ1X) 
= 1 + φ1 X + φ1

2 X2 + … + φ1
n Xn + … 

 the coefficient of  Xn in A(X) is… 

√5 

1 
φ2

n 

√5 

-1 
+ φ1

n 

1 

(1 – φ2X) 
= 1 + φ2 X + … + φ2

n Xn + … 

√5 
1 

(-1/φ)n 

√5 
-1 

+ φn Fn =  

where φ = 1 + √5 

2 

Closed form for Fibonaccis 

“golden ratio” 

√5 
1 

(-1/φ)n 

√5 
-1 

+ φn Fn =  

Closed form for Fibonaccis 

√5 
1 

φn 
Fn =  closest integer to  

To recap… 

 
i = 0 

 

aiX
i P(X) = 

Given a sequence V = < a0, a1, a2, ..., an, … > 

associate a formal power series with it 

This is the “generating function” for V 

We just used this for solving the  

Fibonacci recurrence… 

Multiplication 

A(X) = a0 + a1 X + a2 X2 + …  

B(X) = b0 + b1 X + b2 X2 + …  

multiply them together 

(A*B)(X) = (a0*b0) + (a0b1 + a1b0) X         

  + (a0b2 + a1b1 + a2b0) X2    

   + (a0b3 + a1b2 + a2b1 + a3b0 ) X
3  

     + …  

seems a bit less natural in the vector representation 

(it’s called a “convolution” there) 

Multiplication: special case 

A(X) = a0 + a1 X + a2 X2 + …  

Special case: B(X) = 1 + X + X2 + …  

multiply them together 

(A*B)(X) = a0 + (a0 + a1) X + (a0 + a1 + a2) X2  

+ (a0 + a1 + a2 + a3) X3 + …  

it gives us partial sums! 

1 

1-X 
= 
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For example… 

Suppose A(X) = 1 + X + X2 + …  

 

and B(X) = 1 + X + X2 + …  

  

1 

1-X 
= 

1 

1-X 
= 

then (A*B)(X) = 1 + 2X + 3X2 + 4X3 + …  

1 

1-X 
= 1 

1-X 
* 

1 

(1-X)2 
= 

Generating function for integers <0,1,2,3,4…> 

Take  1 + 2X + 3X2 + 4X3 + …  
1 

(1-X)2 
= 

¢1 + ¢2X
1 + ¢3X

2 + ¢4X
3 +…  1 

(1-X)3 
= 

multiplying through  by 1/(1-X) 

Generating function for the triangular numbers! 

What happens if  we again  

take prefix sums? 

<1,2,3,4,…> 1 

(1-X)2 
= 

1 

(1-X)3 
= 

1 

1-X 
= <1,1,1,1,…> 

<¢1,¢2,¢3,¢4,…> 

What’s the pattern? 

1 

(1-X)k 
= ??? 

1 

(1-X)2 
= 

1 

(1-X)3 
= 

1 

1-X 
= 

0 

0 

1 

0 

2 

0 

3 

0 

<1,2,3,4,…> 

<¢1,¢2,¢3,¢4,…> 

1 

(1-X)n 
= ??? 

What’s the pattern? 

       ,      ,       ,       , …  

1 

(1-X)2 
= 

1 

(1-X)3 
= 

1 

1-X 
= 

0 

0 

1 

0 

2 

0 

3 

0 

<¢1,¢2,¢3,¢4,…> 

1 

1 

2 

1 

3 

1 

4 

1 
       ,      ,       ,       , …  

       ,      ,       ,       , …  

1 

(1-X)n 
= ??? 

What’s the pattern? 

1 

(1-X)2 
= 

1 

(1-X)3 
= 

1 

1-X 
= 

0 

0 

1 

0 

2 

0 

3 

0 

1 

1 

2 

1 

3 

1 

4 

1 
       ,      ,       ,       , …  

       ,      ,       ,       , …  

2 

2 

3 

2 

4 

2 

5 

2 

       ,      ,       ,       , …  

1 

(1-X)k 
= ??? 

What’s the pattern? 
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1 

(1-X)2 
= 

1 

(1-X)3 
= 

1 

1-X 
= 

0 

0 

1 

0 

2 

0 

3 

0 

1 

1 

2 

1 

3 

1 

4 

1 
       ,      ,       ,       , …  

       ,      ,       ,       , …  

2 

2 

3 

2 

4 

2 

5 

2 

       ,      ,       ,       , …  

1 

(1-X)k 
=  

n = 0 

 

Xn n+k-1 

k-1 

What’s the pattern? 

1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

1 6 15 20 15 6 1 

From last lecture: summing on avenues 

 
i = m 

n 
i 

m 

n+1 
m+1 

= 

Can be used to 

derive the 

coefficient of 

Xn 

 

 

 

[Exercise!] 

1 

(1-X)k 
in  

What is the coefficient of  Xn 

in the expansion of: 

 

( 1 + X + X2 + X3 + X4 + . . . . )k ? 

Each path in the choice tree for the 

cross terms has n choices of  
exponent e1, e2, . . . , ek ¸ 0. Each 

exponent can be any natural number. 

Coefficient of  Xn is the number of  

non-negative solutions to:  

e1 + e2 + . . . + ek  = n 

Another  

way to  

see it… 

n + k - 1 

k - 1 

What is the coefficient of  Xn 

in the expansion of: 

 

( 1 + X + X2 + X3 + X4 + . . . . )k ? 

Another  

way to  

see it… 

The Convolution Rule 
A(X) = a0 + a1 X + a2 X2 + …  B(X) = b0 + b1 X + b2 X2 + …  

A  and B disjoint 

Then, number of  ways to select n items total  

from A B  = a0bn + a1bn-1 + a2bn-2 + …. + anb0  

      

GF for selecting items  

from set A 
GF for selecting items  

from set B 

Suppose there is a bijection between n-element  

selections  from A B  and ordered pairs of   

selections from A  and B  containing total of  n els. 

GF for selecting items from disjoint union A B  

       = A(X) B(X) 

Another useful operation:  

Differentiation 

A(X) = a0 + a1 X + a2 X2 + …  

differentiate it… 

A’(X) = a1 + 2a2 X + 3a3 X2 … 

 
i = 0 

 

(i+1)ai+1 X
i A’(X) = 

 
i = 0 

 

iai X
i X A’(X) = 
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1 

(1-X)k 
=  

n = 0 

 

Xn n+k-1 

k-1 

Example of  differentiation in action 
Differentiation in use 

Exercise:  Prove that the generating function  

for squares, i.e.,  

the sequence an = n2,  n=0,1,2….  equals 
 

 

Hint: Use differentiation + shifting twice 

Integration 

A(X) = a0 + a1 X + a2 X2 + …  

Integrating both sides …. 

Example 

Evaluate the sum 

Substituting X=1, answer =  

cn = # ways to walk from (0,0) to (n,n) along 
the grid so that we never cross the diagonal 

 

(n,n) 

0 

I like Catalan ! 

n 

n 

The bijection was clever but 
where did it come from?  
 
A more systematic 
approach? 

Recurrence + generating 
functions! 

cn = # Manhattan walksfrom (0,0) to (n,n) 
that never cross the diagonal  (define c0=1). 

 

(n,n) 

(0,0) 

A recurrence 

n 

n 

The walk must hit the 
diagonal at least once 
(perhaps only at the end). 
 
 
 

(k,k) 
# walks that hit the diagonal  
at (k,k) for the first  time? 
   (1 ≤ k ≤ n)  
 
Answer: ck-1  cn-k 
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Catalan generating function 

Define  

Coefficient of   

xn-1 in C(x)2 

So C(x) = x C(x)2  Hmm… 

Be careful about c0 (base cases) 

Correct equation:   C(x) =  1 + x C(x)2  

Catalan generating function 

x C(x)2 – C(x) + 1 = 0  

Using this, one can calculate  

Define D(x) = 2x C(x) = 1 – (1-4x)1/2 =  dn xn 

cn  = dn+1/2 

Another take on Catalan GF 

Let E(X) be the GF for super non-crossing  
Manhattan  walks on n x n grids that 

never touch the diagonal  (except at endpoints) 

Fact 1: E(X)  = X C(X) 

Fact 2: C(X)  = 1 + E(X) + (E(X))2 + (E(X))3 + …. 

Together these imply  

Now to a seemingly  

over the top  

 counting problem… 

Let cn = number of  ways to  

pick exactly n fruits. 

What is a closed form for cn? 

E.g., c5 = 6 

So if  A(x), B(x), O(x) and P(x) 

are the generating functions for the  

number of  ways to fill baskets using  

only one kind of  fruit 

the generating function for 

number of  ways to fill basket using 

any of  these fruits is given by 

C(x) = A(x)B(x)O(x)P(x) 

Recall Convolution Rule 
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Suppose we only pick bananas 

bn = number of  ways to pick n fruits, only bananas. 

<1,0,1,0,1,0,…> 

B(x) = 1 + x2 + x4 + x6 + … 
1 

1-X2 
= 

Suppose we only pick apples 

an = number of  ways to pick n fruits, only apples. 

<1,0,0,0,0,1,…> 

A(x) = 1 + x5 + x10 + x15 + … 
1 

1-X5 
= 

Suppose we only pick oranges 

on = number of  ways to pick n fruits, only oranges. 

<1,1,1,1,1,0,0,0,…> 

O(x) = 1 + x + x2 + x3 + x4 
1-X5 

1-X 
= 

Suppose we only pick pears 

pn = number of  ways to pick n fruits, only pears. 

<1,1,0,0,0,0,0,…> 

P(x) = 1 + x 
1-X2 

1-X 
= 

Let cn = number of  ways to  

pick exactly n fruits of  any type 

 cn xn =  A(x) B(x) O(x) P(x) 

=  1-X2 

1-X 

1 

1-X5 

1 

1-X2 

1-X5 

1-X 
=  

1 

(1-X)2 

1 

(1-X)2 
cn is coefficient of  Xn in  

<1,2,3,4,…> 

cn = n+1. 

Let cn = number of  ways to  

pick exactly n fruits of  any type 
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Another recurrence example 

Goal: derive a closed form 

using generating functions. 

Let 

Proceeding as in Fibonacci example… 

Let 

A closed form Simplifying to retrieve dn 

Factorize denominator to break it into smaller pieces! 

Retrieving dn Some Common GFs 

Generating 

Function 
Sequence 
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Formal Power Series 

 

Basic operations on Formal Power 
Series 

 

Solving recurrences using   

generating functions  

(handle base cases carefully!) 

    

Solving G.F. to get closed form 

 

G.F.s for common sequences 

 

Prefix sums using G.F.s 

 

Using G.F.s to solve counting problems 

Here’s What 

You Need to 

Know… 


