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0. Warmup

(a) How many generators does Zpq (under the + operation) have where p, q are primes?

(b) Let G be a group where every element (besides the identity) has order 2. Prove
that G is abelian.

(c) Prove that there is a unique group up to isomorphism with 251 elements.

(d) Consider the “mattress” group K4 with the following group table:

◦ I R F H

I I R F H
R R I H F
F F H I R
H H F R I

Write down all the proper subgroups of K4.

(e) Let H be a proper subgroup of a finite group G. For an element g ∈ G, denote by
gH the set {gh | h ∈ H}.

1. Let g1, g2 ∈ G. Prove that the sets g1H and g2H are equal if g−11 g2 ∈ H and
disjoint otherwise.

2. Use the above to prove Lagrange’s theorem, namely |G| is divisible by |H|.
(f) Verify that the subset of complex numbers Q(i) = {a+bi | a, b ∈ Q} where i =

√
−1

is a field under addition and multiplication as complex numbers. (Here, as usual,
Q denotes the field of rationals.)

(g) Find a polynomial f(X) ∈ F13[X] of degree at most 2 satisfying f(0) = 1, f(1) = 0,
and f(6) = 5.

(h) Find the smallest positive integer n satisfying n ≡ 1 (mod 9), n ≡ 2 (mod 10), and
n ≡ 7 mod 11.

(i) Prove that polynomials of degree at most 2 in F2[x], with addition and multiplication
modulo (1 + x+ x3), form a finite field with 8 elements.
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1. Product of two elements and 251 primes

(a)(10) Let A be a subset of a finite group G with |A| > |G|/2. Prove that every element
of G can be written as the product of two elements of A. Is this also aways true
when |A| = |G|/2?

Solution:

(b)(15) Prove that there are 15251 consecutive positive integers each of which is divisible
by at least 251 distinct primes.

(You may use the existence of an infinite supply of prime numbers.)

Solution:
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2. Cyclic prime fun

Let p be a prime number. Consider the group Z∗p of integers {1, 2, . . . , p − 1} under
multiplication modulo p.

(a)(8) Let d be a divisor of (p − 1). Prove that there are exactly d elements a in Z∗p that
satisfy ad = 1.

Hint: Use Fermat’s little theorem and the polynomial factorization Xp−1 − 1 =
(Xd − 1)(Xd(k−1) +Xd(k−2) + · · ·+Xd + 1) where k = (p− 1)/d.

Solution:

(b)(5) Prove the following for any positive integer n∑
d|n

φ(d) = n

where φ(·) is the Euler totient function and d|n means that d divides n, so the sum
is over all the divisors of n (including 1, n).

Hint: Partition elements a ∈ {1, 2, . . . , n} based on gcd(a, n).

Solution:

(c)(12) Using the previous two parts, prove that the group Z∗p is cyclic.

Solution:
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3. Fun with polynomials

(a)(10) Consider the polynomial P (X) = (X−1)(X−2) · · · (X−250)(X−251) + 1. Prove
that P (X) is irreducible over the integers, i.e., one cannot write P (X) = Q(X)R(X)
for polynomials Q,R with integer coefficients unless either Q or R is a constant
polynomial (equal to ±1).

Hint: Suppose that P (X) = Q(X)R(X) where degree of both Q and R is less than
251, and derive a contradiction.

Solution:

(b)(15) A polynomial P (X) with integer coefficients will certainly satisfy P (n) ∈ Z for
every n ∈ Z. However, there also exist polynomials with non-integer coefficients
that take integer values at all integer points. For example, the polynomials

(
X
m

)
for

m ∈ N defined by (
X

m

)
=
X(X − 1)(X − 2) · · · (X −m+ 1)

m!
.

Prove that a degree d polynomial P (X) with rational coefficients satisfies P (n) ∈ Z
for every n ∈ Z if and only if it can be written in the form

P (X) = a0 + a1

(
X

1

)
+ a2

(
X

2

)
+ · · ·+ ad

(
X

d

)
(1)

for some integers aj, j = 0, 1, . . . , d.

Hint (for the ‘only if’ part): First argue that any degree d polynomial can be
expressed in the form (1) with real coefficients aj. Then show that the aj’s have to
be integers.

Solution:
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4. Groups catch errors

(a)(8) The ISBN (International Standard Book Number) is a system to identify books
published worldwide. The ISBN of a book is usually found on the last cover page.
The current standard (as of January 1, 2007) uses a 13-digit system, but for this
problem let us work with the older 10-digit code where the first nine digits identify
the book and the last digit is a check digit to detect mistakes in, say, typing or
communicating ISBNs. An ISBN can thus be viewed as a sequence of 10 digits
x1x2 . . . x10 where for all i = 1, 2, . . . , 9, xi is one of the digits 0, 1, 2, . . . , 9 (the
exact way these are assigned by publishers is not important to us here). The check
digit x10 has 11 possible values {0, 1, 2, . . . , 10} (if the check digit happens to be a
10, it is denoted by the roman numeral X), determined by the following congruence:

1x1 + 2x2 + · · ·+ 8x8 + 9x9 + 10x10 ≡ 0 (mod 11) .

(i) Let x1x2 · · ·x9x10 be the correct ISBN of a book. Suppose that, during the
billing procedure, a single error has been made in entering the ISBN; i.e, in the
i’th place for some i, yi is printed instead of xi where xi 6= yi. Prove that this
error can be detected; formally, show that the resulting 10 digit sequence is not
a valid ISBN.

(ii) Same as above, except now consider the error where two unequal digits xi, xj
are swapped, that is an error of the form

x1x2 · · ·xi xi+1 · · ·xj xj+1 · · ·x9x10 −→ x1x2 · · ·xj xi+1 · · ·xi xj+1 · · ·x9x10

where xi 6= xj.

Solution:

(b)(5) The above ISBN system was thus able to detect single symbol errors and transpo-
sitions (swaps) of an arbitrary pair of symbols. However, it will be nice to have a
code over just the decimal system, without needing the roman numeral X.

Let us now see such a system, which is the basis of the bank routing numbers in
the United States. The check digit scheme used on routing numbers uses a 9-digit
number with position weightings of 3, 7, and 1. Specifically, the check equation for
a number x1x2 . . . x9 (where each xj ∈ {0, 1, . . . , 9}) is

3(x1 + x4 + x7) + 7(x2 + x5 + x8) + (x3 + x6 + x9) ≡ 0 (mod 10) .

It is easy to see, as with the ISBN system, that the above check rule is able to
detect single errors.

Prove, however, that this system sometimes fails to detect some adjacent transpo-
sitions (a common form of error) where xixi+1 (with xi 6= xi+1) are swapped for
some i, i.e., an error of the form

x1 · · · xi−1xixi+1xi+2 · · ·x9 −→ x1 · · ·xi−1xi+1xixi+2 · · ·x9 . (2)
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Solution:

(c)(12) Given the previous parts you are now losing sleep over constructing a decimal check
digit system that can detect adjacent transpositions of the form (2). Fortunately,
as a 15-251 student, you are familiar with basic group theory, and know a nice
group with 10 elements, namely the dihedral group D5 of symmetries of the regular
pentagon.

Recall that D5 has 10 elements {Id, r1, r2, r3, r4, f1, f2, f3, f4, f5}, where as in lecture,
ri denotes clockwide rotation by (72i)◦ degrees and fj denotes reflection about its
axis through j.

(i) Consider the bijection σ : D5 → {0, 1, 2, . . . , 9} where σ(Id) = 0, σ(ri) = i for
i = 1, 2, 3, 4 and σ(fj) = 4 + j for 1 ≤ j ≤ 5.
Is this an isomorphism betweenD5 and Z10 (under addition modulo 10)? Justify
your answer (in at most one sentence).

(ii) Let {a0, a1, . . . , a9} be an arbitrary enumeration of elements of D5.

It turns out that one can construct a “magic” bijection T : D5 → D5 such that
for all i 6= j, then ai · T (aj) 6= T (ai) · aj (here i, j ∈ {0, 1, . . . , 9}, and · denotes
the group operation in D5).

You do not have to construct a magic T as claimed above; however, can you tell
your 251 TAs how to use T to construct a 10-digit decimal check digit system
that can detect single digit errors and all adjacent transpositions?

In other words, specify a check rule using T for sequences (x1, x2, . . . , x10) ∈
{0, 1, . . . , 9}10 such that starting with a valid sequence satisfying the check rule,
swapping xi and xi+1 for xi 6= xi+1 as in (2) leads to a violation of the check
rule.

Solution:


