%WHOAMI

- Hui Han Chin
- Raising Senior, Mathematical Sciences/ Computer Science
- Office Hours: MR 430-630
- Location: GHC 7110
ACTUAL COURSE GOALS

- Get a “good” grade
- Appear to know CS algorithm
- Able to implement simple algorithms
- Be motivated to do future work on algorithm
WHO ARE YOU?

- Who here is a ___________________?
 - Not registered
 - Repeat offender
 - Sop / Jnr / Snr / Master
 - CS / Math / Others

- Motivation
 - Fulfill requirements
 - Fulfill graduation requirements
 - For the interest
Recitations structure

- Administrivia
 - Boring stuff that I am required to say

- Topic review
 - What you should have known
 - What is on the lab

- Practice Problem(s)
 - “What might be in the quiz”

- Tips and Tricks
 - What might be useful in the final
RECITATION GROUND RULES

- Homework Questions will not be entertain during class time.
 - Come to office hours instead
- Leave interesting questions to the end of class
- Sleeping is welcome but not snoring. And please be discreet.
- Attendance is not compulsory
 - But quizzes are!
 - But don’t blame me if I give vital clues and you missed that recitations
Office Hours Ground Rules

- I will not tell you the answers
 - Come only after reading the questions
 - Come prepared
- I will not lead you in the wrong direction
 - If I pose you a question, it is usually a hint
- I more than willing to answer interesting questions
 - Homework problem suggestions are welcome!
HOMEWORK HANDIN

- Theory is handed in class
- Hand in folder
- FTP using putty/ SSH
- IDE / Eclipse / Vanilla Java
- Junit Testing.
ALGORITHMS

- Just a CS cooking recipe
- 1. To design algorithms for new problems.
- 2. To analysis the performance of algorithms.
- 3. To decide whether a problem is tractable.

Question

- How long does it takes to sort 10^9 bytes (8 bit data struct)
Computational Model

- "A computational model is a mathematical model in computational science that requires extensive computational resources to study the behavior of a complex system by computer simulation" - wiki definitions.

- A model where
 - The basic computation step is determined.
 - The limits of computation are well defined.

- Infinite RAM model
ASYMPTOTIC ANALYSIS

- Big-O, Theta, Big-Omega
- Definitions
- Common Pitfalls
 - 1. Not check the computational model
 - 2. Using the wrong input size or type
 - 3. Assuming a loose bound.
 - 4. Ignoring special cases.
- Example
Solving Recurrences

- Solving Recurrences VS Theta bound
 - Solving requires finding the constants
 - Matters a lot in real world implementation
- 5 ways of solving recurrences
 - Induction
 - Loop unrolling
 - Tree
 - Masters Theorem?
 - Mathematica!
15-211: LAB 1: AAD

Slides stolen from Nathan Harmata (15121 / s09)
TODAY’S PLAN

- Develop a new data structure based on everything we’ve learned so far
- Use this data structure to solve the Dictionary Problem
- Analyze this data structure with respect to efficiency
BEFORE WE BEGIN...

- Recall the definition of the **Dictionary Problem**:
 - Design a way to:
 - Store stuff
 - Remove stuff
 - Check if stuff has been stored
THE DICTIONARY PROBLEM

More formally –

- Design a *data structure* that supports the following operations:
 - `add(e)` – make `e` a member
 - `remove(e)` – ensure `e` is not a member
 - `contains(e)` – check for membership of `e`
THE DICTIONARY PROBLEM

Question:

- add(e) – make e a member
- remove(e) – ensure e is not a member
- contains(e) – check for membership of e

Is a ... a solution to the **Dictionary Problem**?
BY THE WAY...

- We’ve already encountered at least two explicit solutions to the Dictionary Problem:
 - FastLinkedLists – aka “Skip Lists”
 - insert, delete, contains
 - HashSets
 - add, remove, contains

add(e) – make e a member
remove(e) – ensure e is not a member
contains(e) – check for membership of e
LET’S GET MOTIVATED

- Arrays are pretty cool, so let’s try to solve the Dictionary Problem by maintaining a sorted dynamic array structure

[1,5,8,9]
Hey look, it’s sorted!
IDEA 1: DYNAMIC SORTED ARRAY IMPLEMENTATION OF ADD

- add(e) – make a new array that is one size bigger, and copy e and all the elements into it so that the new array is sorted

ex: add(6) on

\[
\begin{bmatrix}
1, 5, 8, 9 \\
_, _, _, _, _ \\
1, 5, 6, 8, 9
\end{bmatrix}
\]
Idea 1: Dynamic Sorted Array

Implementation of remove

- **remove(e)** – make a new array that is one size smaller, and copy all the elements except for `e` into so the new array is sorted

Example: remove(6) on

```
[ 1 , 5 , 6 , 8 , 9 ]
[ _ , _ , _ , _ , _ ]
[ 1 , 5 , 8 , 9 ]
```
Idea 1: Dynamic Sorted Array
Implementation of contains

- contains(e) – binary search the array

ex: contains(1) on
[1 , 5 , 8 , 9]

[1 , 5 , 8 , 9]

[1 , 5 , 8 , 9]

[1 , 5 , 8 , 9]
Idea 1: Dynamic Sorted Array Efficiency Analysis?

- Suppose our dictionary has N elements. What is the cost of:

 - $\text{add}(e)$ – make a new array that is one size bigger, and copy e and all the elements into it so the new array is sorted

 - $\text{remove}(e)$ – make a new array that is one size smaller, and copy all the elements except for e into so the new array is sorted

 - $\text{contains}(e)$ – binary search the array
AN OBSERVATION

For large N, add(e) and remove(e) are pretty expensive.

That’s because $O(n)$ is an increasing polynomial!
In general, would you rather do all that stuff (like binary search and array copying) on small arrays or big arrays?

Small arrays are ez!!!
Idea 2: A bunch of small dynamic sorted arrays

Let’s just maintain a bunch of sorted arrays. Whenever we do something, we try to do it with the smallest array first (because that would be the least expensive).

[1 , 5]
[2 , 4]
[3 , 6 , 7]
IDEA 2: A BUNCH OF SMALL DYNAMIC SORTED ARRAYS

- **add(e)** - insert e in the smallest array

ex: **add(8)** on

\[
\begin{array}{c}
[1, 5] \\
[2, 4] \\
[3, 6, 7]
\end{array}
\]
IDEA 2: A BUNCH OF SMALL DYNAMIC SORTED ARRAYS

- contains(e) - look for e in each of the arrays, starting with the smallest array

ex: contains(7) on

\[\begin{array}{c}
\text{[2, 4]} \\
\text{[1, 5, 8]} \\
\text{[3, 6, 7]}
\end{array} \]
IDEA 2: A BUNCH OF SMALL DYNAMIC SORTED ARRAYS

- remove(e) - look for e, starting with the smallest array. If we find it, we replace that array with a new one that doesn’t contain e

ex: remove(2) on

\[
\begin{align*}
&\begin{bmatrix} 2 \end{bmatrix} 4 \\
&\begin{bmatrix} 1, 5, 8 \end{bmatrix} \\
&\begin{bmatrix} 3, 6, 7 \end{bmatrix}
\end{align*}
\]
IDEA 2: A BUNCH OF DYNAMIC SORTED ARRAYS
EFFICIENCY ANALYSIS?

- Suppose our dictionary has \(N \) elements, in \(M \) arrays \((A_1, A_2, \ldots, A_m)\) and the length of array \(A_i \) is \(L_i \). What is the cost of:

- add(e) – insert \(e \) in the smallest array

\[O(L_{\text{smallest array}}) \]
IDEA 2: A BUNCH OF DYNAMIC SORTED ARRAYS

EFFICIENCY ANALYSIS?

Suppose our dictionary has \(N \) elements, in \(M \) arrays \((A_1, A_2, ..., A_m)\) and the length of array \(A_i \) is \(L_i \). What is the cost of:

- \text{contains(}e\text{)} — look for \(e \), starting with the smallest array

\[
O(\log(L_1)) + O(\log(L_2)) + ... = O(\sum_{i=1}^{M} \log(L_i)) = O(\log(\prod_{i=1}^{M} L_i))
\]

We need to binary search each array
IDEA 2: A BUNCH OF DYNAMIC SORTED ARRAYS

EFFICIENCY ANALYSIS?

Suppose our dictionary has N elements, in M arrays $(A_1,A_2,...,A_m)$ and the length of array A_i is L_i. What is the cost of:

- $\text{remove}(e)$ – look for e, starting with the smallest array. If we find it, we replace that array with a new one that doesn’t contain e

$$O(\log(\prod_{i}^{M} L_i)) + O(L_k)$$

We need to search for e

Once we find it (in A_k) we need to remove it
TWO OBSERVATIONS

\[O(\log(\prod_{i=1}^{m} L_i)) \]

is expensive when \(M \) is big

is expensive when \(L_{\text{smallest array}} \) is big
So,

- for a dictionary on N elements, in M arrays (A_1, A_2, \ldots, A_m) and the length of array A_i is L_i,

... it would be nice if we could keep both M and $L_{\text{smallest array}}$ small...
QUESTION

In general, would you rather do all that stuff (maintaining a bunch of sorted arrays) with a lot of arrays or a few arrays?

A few arrays plz!!!
IDEA 3

- With these observations in mind, let’s try to do better
IDEA 3: AMORTIZED ARRAY-BASED DICTIONARY (AAD)

- Basically the same as our previous idea, except:
 - All of the arrays have different sizes
 - Each array has a size of the form 2^k, for some k

ex:

- $[3]$ \[2^0 = 1 \]
- $[1, 4]$ \[2^1 = 2 \]
IDEA 3: AAD

- **Formal definition:**
 - An AAD on N elements:
 - Consists of sorted arrays
 - Each array has a different length
 - Each array has a length that is a power of 2
 - The sum of the lengths of the arrays is N
 - $\text{contains}(e)$ iff e is in one of the arrays

Let’s call this the “AAD property”
IDEA 3: AAD

- Is this an AAD?

\[
\begin{bmatrix}
3 \\
1, 6, 7
\end{bmatrix}
\]
Idea 3: AAD

- Is this an AAD?

\[[3] \]
\[[1, 6, 7, 9] \]
\[[2, 4, 5, 8] \]
IDEA 3: AAD

- Is this an AAD?

By our definition, this is THE WAY to represent a dictionary with no elements!
IDEA 3: AAD

- Is this an AAD?

[3]
[7, 1, 9, 6]
IDEA 3: AAD

- Is this an AAD?

\[[1, 6, 7, 9] \]
\[[2, 4, 5, 8, 9, 14, 20, 25] \]
Idea 3: AAD

- **Theorem:**
 The *structure* of an AAD on N elements is unique

- **Proof:**
 The *structure* of such an AAD is related to the binary representation of N, which is unique.
IDEA 3: AAD

- **Theorem:**
 The *structure* of an AAD on N elements is unique

- We’ll use this theorem to our advantage. In designing add(e) and remove(e), we’ll try to think of the simplest and most efficient algorithms that get the job done.
IDEA 3: AAD

ADD

- add(e) – include [e], and then enforce the “AAD property”

ex: add(2) on

[2]
[3]
[1, 6, 7, 9]
[2, 4, 5, 8, 9, 14, 20, 25]
IDEA 3: AAD ADD (CONT.)

- Recall the theorem we just proved: “The *structure* of an AAD on N elements is unique”

- We just added an element to an AAD on 13 elements, so now we have 14 elements

ex: $\text{add}(2)$ on

$$\begin{bmatrix} 3 & _ \\ 1, 6, 7, 9 \end{bmatrix}$$

$$\begin{bmatrix} 2, 4, 5, 8, 9, 14, 20, 25 \end{bmatrix}$$
A really simple (and efficient) idea is to just *merge* the arrays of the same size (starting with the smallest arrays) until they all have different sizes.

\[
\begin{align*}
[2] \\
[3] \\
[1, 6, 7, 9] \\
[2, 4, 5, 8, 9, 14, 20, 25]
\end{align*}
\]
Idea 3: AAD

ADD (CONT.)

merging arrays of the same size until all the arrays have different sizes will enforce the “AAD property”
Idea 3: AAD
ADD (CONT.)

\[
\begin{align*}
[2] \\
[2 \ 3] \\
[1, 6, 7, 9] \\
[2, 4, 5, 8, 9, 14, 20, 25]
\end{align*}
\]

We can merge these guys
IDEA 3: AAD
MERGING TWO ARRAYS

Wait, how can we combine two sorted arrays into one sorted array?
IDEA 3: AAD
MERGING TWO ARRAYS

- We would like to design the function `merge` with the following specification:

 when A and B are sorted arrays,

 \[\text{merge}(A,B) = C \]

 such that:

 - C contains, in sorted order, the contents of A and B
 - C.length = A.length + B.length
Idea 3: AAD
Merging Two Arrays

Any ideas?

\[
\begin{align*}
[2, 4, 6, 8] & \quad \text{MERGE} \quad [1, 3, 5, 7] \\
[_ , _ , _ , _ , _ , _ , _ , _ , _ , _]
\end{align*}
\]
IDEA 3: AAD

- **Theorem:**
 \[\text{merge}(A,B) \text{ has a cost of } O(A.length + B.length) \]

- **Proof:**
 This follows directly from the intelligent way to implement merge – taking advantage of the fact that \(A \) and \(B \) are sorted!
IDEA 3: AAD
ADD (CONT.)

ex: add(8) on

[8]
MERGE
[2, 8]
MERGE
[2, 3, 4, 8]
MERGE
[1, 2, 3, 4, 5, 6, 7, 8]
Idea 3: AAD
MERGING TWO ARRAYS

This only works if we merge the smallest arrays first!
Idea 3: AAD CONTAINS

- `contains(e)` - look for `e` in each of the arrays, starting with the smallest array
- (exactly the same as with Idea 2)

Example:

`contains(14)` on

```
[2, 3]
[1, 6, 7, 9]
[2, 4, 5, 8, 9, 14, 20, 25]
```
Idea 3: AAD

REMOVE

- `remove(e)` – there are three cases:
 - **Case 1** – `e` is not in the dictionary
 - **Case 2** – `e` is in the dictionary, and it’s in the smallest array
 - **Case 3** – `e` is in the dictionary, and it’s not in the smallest array
IDEA 3: AAD
REMOVE — CASE 1

Case 1 — e is not in the dictionary

We’re done!!!
IDEA 3: AAD
REMOVE — CASE 2

Case 2 — e is in the dictionary, and it’s in the smallest array

\[
\begin{align*}
\text{[}_\text{, e } \text{, } _\text{, } _\text{, } _\text{, } _\text{] } & \quad \rightarrow \quad \text{[}_\text{, } _\text{, } _\text{] } \\
\text{[}_\text{, } _\text{, } _\text{] } & \quad \rightarrow \quad \text{[}_\text{, } _\text{, } _\text{] }
\end{align*}
\]

The rest of the dictionary didn’t change
Idea 3: AAD
A cool idea for REMOVE(e)

Idea: remove e from the smallest array, and then split it up into a bunch of smaller arrays

\[
\begin{align*}
\left[_, e, _, _ \right] & \quad \rightarrow \quad \left[_, _ \right] \\
\text{then just put those arrays in the dictionary}
\end{align*}
\]
Idea 3: AAD
Remove — Case 3

Case 3 — e is in the dictionary, and it’s not in the smallest array

Idea:

- find the array that contains e
- remove e from that array
- steal the biggest element from the smallest array and insert it
- then, simply split up the smallest array
Idea 3: AAD
Remove – Case 3 (cont.)

- Does this idea of using “split up” work?

\[
\begin{align*}
&\frac{1}{3} + \frac{1}{6} = \frac{1}{2} \\
&\frac{1}{9} + \frac{1}{18} = \frac{1}{9} \\
&\frac{1}{2} + \frac{1}{4} + \frac{1}{5} + \frac{1}{8} + \frac{1}{9} + \frac{1}{14} + \frac{1}{20} + \frac{1}{25} = \frac{128}{258} > 1/2
\end{align*}
\]

Yes!!!

\[2^k - 1 = \sum_{i=0}^{k-1} 2^i\]
IDEA 3: AAD

Cool, we’ve successfully designed the AAD data structure, which solves the dictionary problem.

Let’s prove some stuff about AADs!
IDEA 3: AAD

- **Theorem:**
 The *specific structure* of an AAD on N elements is uniquely determined by the operations which created it.

- **Proof:**
 The empty AAD is unique.

 Both $\text{add}(e)$ and $\text{remove}(e)$ have predictable structural behavior, given the structure of the AAD.
IDEA 3: AAD
AN IMPORTANT OBSERVATION

We DEFINITELY want to permit duplicates in an AAD!!! Otherwise, add(e) becomes more complicated.
IDEA 3: AAD
FREQUENCY

- So, we introduce the notion of \textit{frequency}
- \texttt{frequency}(e) =
 - The number of elements in the AAD equal to \texttt{e}
 \textit{as well as}
 - The number of times we need to perform \texttt{remove}(e) before \texttt{contains}(e) is false
Idea 3: AAD

Frequency

- frequency(e) – search for e and count how many times we find it

ex: frequency(9) on

\[
[2, 3] \\
[1, 9, 9, 9] \\
[2, 4, 5, 8, 9, 14, 20, 25]
\]
IDEA 3: AAD

COMBINE

- We would like to be able to “combine” two dictionaries.
- \(\text{combine}(D) \) – combines the contents of the AAD \(D \)

\[
\begin{align*}
[3] & \quad \text{COMBINE} \quad [1, 3] \\
[1, 6] & \quad \rightarrow \quad [3] \\
[1, 1, 3, 6] & \quad \rightarrow \quad [1, 1, 3, 6]
\end{align*}
\]

- For AADs, we can actually implement \(\text{combine}(D) \) rather efficiently.
IDEA 3: AAD

Let's look at another example:

\[
\begin{align*}
[2, 3] & \quad [7, 8] \\
[1, 6, 7, 9] & \quad [1, 1, 4, 8]
\end{align*}
\]

RESULTS IN

\[
[1, 1, 1, 2, 2, 3, 4, 6, 6, 7, 7, 8, 8, 9]
\]
IDEA 3: AAD

Any ideas?

Let’s just combine the two AAD’s structurally, and then mergeDown
IDEA 3: AAD

COMBINE

[_, _]

COMBINE

[_, _, _, _]

RESULTS IN

[_]

[_]

MERGEDOWN

[_, _, _, _, _, _, _, _, _]
Idea 3: AAD

- **Theorem:**

 contains(e) on an AAD on N elements is $O((\log N)^2)$

- **Proof:**

 In the worst case, the AAD *does not* contain e and it has log N arrays (so we need to search through each of them).

\[
O(\log(L_1)) + O(\log(L_2)) + ... = O(\sum_{i}^{\log N} \log(L_i)) = O(\sum_{k=0}^{\log N-1} \log(2^k))
\]

\[
= O(\sum_{k=0}^{\log N-1} k) = O\left(\frac{(\log N)(\log N - 1)}{2}\right) = O((\log N)^2)
\]
Idea 3: AAD

- **Theorem:**

 \(\text{add}(e) \) on an AAD on \(N \) elements has a cost of \(O(\log N) \) in the average case.

- **Proof** (the general idea):

 We can predict the expected structure of an AAD for arbitrary \(N \), and then use that structure to predict the merges will occur in the add algorithm (and we know the cost of each merge).
Idea 3: AAD

- **Theorem:**
 - remove(e) on an AAD on N elements has:
 - a cost of \(\text{contains}(e) + O(N)\) in the worst case
 - a cost of \(\text{contains}(e) + O(N')\) in the average case,
 where \(N'\) is a really small fraction of \(N\)

- **Proof** (the general idea):
 - (in both cases, we need to find the array that contains \(e\))
 - **Worst-Case Analysis** - the worst case for removal is that \(N\) is a power of 2 (so there is only 1 array). In this case, we need to "split up" remaining \(N-1\) elements in this array.
 - **Average-Case Analysis** - we can predict the expected structure of an AAD for arbitrary \(N\), predict the remove
IDEA 3: AAD

Suppose e has a frequency of F

- **Theorem:**

 $\text{frequency}(e)$ on an AAD on N elements has a cost of $\text{contains}(e) + O(F)$

- **Proof:**

 This follows directly from our algorithm for $\text{frequency}(e)$
THAT’S ALL

- OH 430-630 @ GHC 7110