
EXAM I - PRACTICE I
15-211

SUMMER SESSION 2, 2010

MATTHEW MIRMAN (MMIRMAN@ANDREW.CMU.EDU)

Name :

Andrew ID (email) :

Date :

Start Time :

Instructions:
• Write your full name and Andrew ID as neatly as humanly possible.
• You have 1 hour and 30 minutes to finish.
• There are 6 pages, and 11 problems.
• No Notes or books are permitted.
• Collaboration is not permitted.
• For full credit, show work, and write neatly. Illegible answers may not receive full credit.

1

EXAM I - PRACTICE I 15-211 SUMMER SESSION 2, 2010 2

Part 1. Recurrences & Asymptotics

Problem 1. Find a closed form for the following recurrences

(1) T (n) = n
2T (n− 1) where T (1) = 1

Notice that nothing is added in the recursion that that without being divided by two, the equation would be:

T (n) = nT (n− 1) =
n∏
i=1

i = n!

Also, notice that

T (n) =
T (n− 1)

2
=

n∏
i=1

1
2

=
1
2n

Thus, T (n) = n!
2n

(2) T (n) = n+ T (n− 1) where T (0) = 0

This turns out to be T (n) =
n∑
i=1

i = n(n+1)
2

Problem 2. Use the master method to find a close bound for T (n) = 3T (n2) + n log4 n

Let f(n) = n log4 n and a = 3 and b = 2. First we can notice that f(n) is probably in O(nlogb a−ε), but we need to
show this formally.
First, notice that 2 > logb a − ε > 1. we can thus write this as 1 + v = logb a − ε where 0 < v < 1. thus we want
to show f(n) ∈ O(n1+v) = O(n ∗ nv) we already know that n ∈ O(n) so we need to show log4 n ∈ O(nv). We know
log4 n ∈ O(lnn) given a previous proof.
Let n0 = (1

v)
1
v . So AFSOC that there exists an n > n0 such that lnn > nv. Then 1

n > v ∗ nv−1 =⇒ 1 > v ∗ nv =⇒
(1
v)

1
v > n. This is a contradiction.

Thus, lnn ∈ O(nv). Thus log4 n ∈ O(nv), and n ∈ O(n)
Finally, multiply these together to find that n log4 n ∈ O(nlogb a−ε).
We can thus apply master method and find that T (n) ∈ Θ(nlogb a).

Problem 3. Use the tree method to find a solution (not necessarily closed form) to T (n) = T (n2) + n given base
case T (1) = 1

This method actually doesn’t require a tree because there is no integer multiplying T (n2). You should notice however
that the “Line” drawn would be depth about log2 n, and that at depth i, it does n(1

2)i work. thus you can set up

the equation T (n) = n
log2 n∑
i=1

1
2i .

Problem 4. Prove or disprove that (∀s, t > 1) nlogs n ∈ Θ(nlogt n)

This is not true. If we write nlogs n = n
log n
log s = (nlnn)

1
ln s , we can say that the statement is equivalent to (∀s, t >

1) (nlnn)
1

ln s ∈ Θ((nlogn)
1

ln t). But what if we pick s = 10 and t = 100. Then this says nlogn ∈ O(n
1
2 logn) . Suppose

that ∃n0, c > 0 such that ∀n > n0, nlnn < cn
1
2 lnn. Thus nlnn < c. This is a contradiction, because lnn > 1 for

values of n > 3 and thus also for n > c, nlnn > n > c.
Therefore, the statement is incorrect. (Note, this is pretty informal. I’d like you to try doing this as formally as
possible-more so than this- but on a test, I’ll give you some slack)

Problem 5. Let f(n) = 4n+ n log2(n2) Circle all true statements

f(n) ∈ O(2n) f(n) ∈ Ω(2n) * f(n) ∈ O(n2) * f(n) ∈ Ω(n2)

f(n) ∈ O(n log2 n) *f(n) ∈ Ω(n log2 n)* f(n) ∈ O(n) *f(n) ∈ Ω(n)*

EXAM I - PRACTICE I 15-211 SUMMER SESSION 2, 2010 3

Part 2. Hashtables

Problem 6. (circle all that apply) A working hashtable has a load factor of 3: (Solution: 2, 7)

(1) The hash table uses open addressing:

Open addressing requires load factors less than 1.

(2) The hash table uses separate chaining: YES

(3) The hash table uses linear probing:

Linear probing is open addressing

(4) The hash table’s size is 9: NO

(5) The hash table’s size is 3: NO

(6) The table is less space efficient than a table who’s load factor is .5:

A table who’s load factor is .5 is wasting half the space it uses. a table with a load factor of

3 is likely wasting no space.

(7) The table is less time efficient than a table who’s load factor is .5:

This table has to go through on average 2 checks before if finds the element it wants. a table

with a load factor of .5 would have to go through 1 check. This is true (although slightly).

(8) The table does not exist:
Load factors can be greater than 1 on tables with separate chaining.

EXAM I - PRACTICE I 15-211 SUMMER SESSION 2, 2010 4

Problem 7. Does the following class have a good hash function? Explain thoroughly. How could it be improved?

public class MagicData{
short month;
int min;
String trunk;
boolean cable;
public boolean equals(Object other){

MagicData b=(MagicData) other;
return trunk.charAt(0)==b.trunk.charAt(0)

&& month==b.month
&& min== b.min
&& cable==b.cable;

}

public int hashCode(){
return trunk.hashCode()*31

+ (cable? 91 : 7)*37
+ min * 137;

}
}
This is a horrible hashcode.
There are a number of poor coding choices here:

• The equals method in this only takes into account the first character of trunk, while
the hashcode uses the hashcode from String which uses every character of trunk. This
is wrong not only because its inefficient, but objects with different trunks but same
first characters in trunk which might otherwise have the same data would get hashed to
different locations in the hashtable and thus not be found on a hash table contains().
• 91 isn’t prime. 7*91 isn’t prime. 91*37 isn’t prime. While not being prime isn’t a
problem, we don’t know how well these numbers work.
• Not including the month parameter in the hashCode make it inefficient by making it
possible that objects with different months (months matter according to the equals
method) get hashed to the same location. Whether you use separate chaining or open
addressing, you could have to go through over 11 different non equal objects to get to
the one you want.
• The multiplied primes chosen are irregular. multiplied numbers should be chosen such
that their location in the integer is well distributed.

Improvement:
public int hashCode(){

return (trunk.charAt(0)*31*31*31
+ min*31*31
+month*31
+(cable?1:0);

}

Reasoning: Java’s “String”.hashCode() method simply multiplies returns
n∑
i=0

31ic[i] with c[i] being

the i’th character (a byte) with values ranging from 0 − 255. Why not just use this since we
know it works well, and that all our data ranges from 0 to at most 255?

EXAM I - PRACTICE I 15-211 SUMMER SESSION 2, 2010 5

Problem 8. Fred Hacker has proposed a hashing scheme for strings of up to 10 bytes that works as follows. He
initializes a table T = new int[10][256] with random 32-bit numbers. Here’s his hash function:

static int hash(byte[] s) {
int a=0;
for (int i=0; i<s.length; i++)

a += T[i][((int)s[i]) & 255];
return a;

}
(1) What is the purpose of writing T[i][((int)s[i]) & 255] instead of the more obvious T[i][s[i]]?

This was silly. Sorry. Bytes in java happen to be signed. If we cast a byte to an int, and use &255, we ensure values
in the byte range, but using an unsigned int so that you won’t be attempting to access a negative element of the
array.

(2) Assuming that the table has been initialized as described, what is the probability that “dog” and “god” have
the same hash value?

Consider a position, i, where there is a difference (name the words 1 and 2). Then, let the sum so far of each be
x1, x2. Furthermore, let the value at position i be v[i][w1,i] and v[i][w2,i] for each letter. Then, for the hash values
to be the same,

x1 + v[i][w1,i] = x2 + v[i][w2,i]
and there is a 1

232 probability that this holds. A simple way to think about this is in terms of degrees of freedom.
In this case there is 1. You can choose any value for v[i][w1i], and then the probability that v[i][w2i] is the correct
value is (trivially) 1

232 .
(3) Annoyed by the large size of the table T, Hacker changes it to a one-dimensional array with 256 random

32-bit integers. So line 4 of the computation becomes: a += T[((int)s[i]) & 255]; In this new scheme
(assuming the table is initialized as described) what is the probability that the strings “abc" and “abd" have
the same hash value?

Since there is no order, these strings hash to the same value exactly when T [′c′] = T [′d′]. The probability of this is
1

232 .
(4) For the one-dimensional table from part (3), what is the probability that the strings “dog" and “god" have

the same hash value?
In this case, the probability is 1 since position no longer matters, since always holds.

EXAM I - PRACTICE I 15-211 SUMMER SESSION 2, 2010 6

Part 3. Dynamic Programming

Problem 9. DP & Fib

(1) Write a bottom-up solution to the Fibonacci sequence: F (n) = F (n − 1) + F (n − 2) with F (0) = 0 and
F (1) = 1.

int fib(int n){
if (n<2) return n;
int table[]=new int[n+1];
table[0]=0;
table[1]=1;
for (int i=2; i<=n ;i++){

table[i]=table[i-1]+table[i-2];
}
return table[n];

}
(2) Find and prove a theta bound for your algorithm.

T (n) ∈ Θ(n) because for each value from i = 1 to i = n, all we do is make a call to two elements in the table. Not
much proving to do here.

Problem 10. Write recurrences for the following problems:

(1) You have infinite amounts of 2, 3, 5, 6, and 7 cent coins. You want to make change for x cents, and you
want to do it with as many coins as possible. (we don’t care how its done, the number of coins total). Let
M(i) be the max number of coins usable to make i cents (with i > 5).

Here, I do not ask for an efficient algorithm, or an efficient equation, just a recursion relation, which comes naturally
from the problem statement:
M(i) = 1 + max{M(i− 2), M(i− 3), M(i− 5), M(i− 6), M(i− 7)}
with M(0) = 0, M(1 or i<0) = −infinity.

(2) Suppose a duck is sitting on one side of a river, and wants to get to the other side of the river without
getting wet. Fortunately, the river is filled with floating rocket pads (numbered 1, · · · , n). If the duck is
on rocket pad i, then the duck can jump to any rocket pad j with i − k < j < i − 2 or i + 2 < j < j + k
provided the rocket pad j exists. Unfortunately, some rocket pads are very hot from just being used to
launch rockets, and the duck doesn’t want to spend too much time on those. Let hi be the heat gained by
standing on rocket pad i. Find a recurrence for the minimum heat required for the duck to get from rocket
pad 1 to rocket pad t (given that n ≥ t).

Yet again, this was an exercise not in coming up with an efficient algorithm, but in writing an equation. Here, the
equation is simply
M(i) = hi + min{ min

i−k<j<i−2
{M(j)}, min

i+2<j<i+k
{M(j)}}.

Note that this is equivalent to trying to find minimum weight path from vertex a to vertex b on a graph, under
certain connections.

EXAM I - PRACTICE I 15-211 SUMMER SESSION 2, 2010 7

Problem 11. You have a set of n integers each in the range 0...K. You want to partition these integers into two
subsets such that you minimize |S1 − S2|,where S1 and S2 denote the sums of the elements in each of the two
subsets. Write some code (pseudo-code or java is fine) to solve this problem, and analyze your solution.

public LinkedList<Integer> partition(int [] vals){
int prev_incl[]=new int[vals.length];
int s1_sums[]=new int[vals.length];
int halfway=0;
for (int i=0;i<vals.length;i++){

s1_sums[i]=vals[i];
prev_incl[i]=-1;
halfway+=vals[i];

}
halfway/=2;
int best=0;
for (int i=0; i<vals.length ; i++){

for (int j=0; j<i; j++){
if (Math.abs(vals[i]+s1_sums[j]-halfway)<Math.abs(prev_incl[i]-halfway)){

prev_incl[i]=j;
s1_sums[i]=vals[i]+s1_sums[j];

}
}
if (Math.abs(s1_sums[i]-halfway)<Math.abs(s1_sums[best]-halfway)){

best=i;
}

}
LinkedList<Integer> reconstruct=new LinkedList<Integer>();
while(best>=0){

reconstruct.add(vals[best]);
best=s1_sums[best];

}
return reconstruct;

}
This algorithm runs in Θ(n2) time because we can construct the time equation T (n) = n+ F (n) + n with F (n) =

F (n− 1) + n =
n∑
i=1

i = n(n+1)
2

so T (n) = 2n+ n2+n
2 ∈ Θ(n2).

