4 ‘mimie '
SR SRS B S SR

.’.’.’ R 2 "0 R =

altatatala’ * ‘o
S R R

COC O OGRS

UNIT 6A
Organizing Data: Lists

15110 Principles of Computing,
Carnegie Mellon University

Data Structure

The organization of data is a very important issue for
computation.

A data structure is a way of storing data in a computer so
that it can be used efficiently.

— Choosing the right data structure will allow us to
develop certain algorithms for that data that are more
efficient.

— An array (or list) is a very simple data structure for
holding a sequence of data.

Arrays in Memory

Typically, array elements are stored in adjacent memory
cells. The subscript (or index) is used to calculate an offset
to find the desired element.

Example: data =[50, 42, 85, 71, 99] Address | Contents
Assume integers are stored using 100 50
4 bytes (32 bits). 104 42
If we want data[3], the computer takes | 198 85
the address of the start of the array 112 71
and adds the offset * the size of 116 99

an array element to find the

Location of data[3] is 100 + 3*4 = 112
element we want.

Do you see why the first index of an array is 0 now?

Arrays: Pros and Cons

* Pros:

— Access to an array element is fast since we can
compute its location quickly.

e Cons:

— |If we want to insert or delete an element, we have
to shift subsequent elements which slows our
computation down.

— We need a large enough block of memory to hold
our array.

Linked Lists

Another data structure that stores a sequence of
data values is the linked list.

Data values in a linked list do not have to be stored
in adjacent memory cells.

To accommodate this feature, each data value has
an additional “pointer” that indicates where the
next data value is in computer memory.

In order to use the linked list, we only need to
know where the first data value is stored.

Linked List Example

* Linked list to store the sequence: 50, 42, 85, 71, 99

address data next

100 42 148
Assume each 108 99 0 (nuII)
int d point
requires 4 bytes, 116

124 50 100
Starting 132 71 108
Location of 140
List (head) 148 85 132
124 156

Linked List Example

e Toinsert a new e

a few pointers.

 Example:
Insert 20
after 42.

Starting
Location of
List (head)

124

ement, we only need to change

address data next
100 42 156
108 99 0 (null)
116

124 50 100
132 71 108
140

148 85 132
156 20 148

Drawing Linked Lists Abstractly

* L=[50,42,85,71,99]

head /

/

50 —T—» 42 —T—» 85 —» 71 —» 99 | null

* Inserting 20 after 42:

20 We link the new node
/ to the list before breaking

head oo
// step 2 >/Step 1 the existing link.

50 » 42| /R8s > 71 » 99 | null

Linked Lists: Pros and Cons

* Pros:

— Inserting and deleting data does not require us to
move/shift subsequent data elements.

e Cons:

— If we want to access a specific element, we need
to traverse the list from the head of the list to find
it which can take longer than an array access.

— Linked lists require more memory. (Why?)

Two-dimensional arrays

Some data can be organized efficiently in a table
(also called a matrix or 2-dimensional array)

Each cell is denoted
with two subscripts,
a row and column
indicator

B[2][3] = 50

A WOIN P O M@

0

1

2 3 4

3

18

43

49

65

14

30

32

53

75

9

238

38+ 50

73

10

24

37

58

62

v

19

40

46

66

2D Arrays in Ruby

data = [[1, 2, 3, 4], O 1 2 3

[5, 6, 7, 8], 0/1(2|3|4

[9, 10, 11, 12] 1156|738

] 219 10[11]12
data[O0] => [1, 2, 3, 4]

data[l][2] => 7
data[2][5] => nil
data[4][2] => undefined method '[]' for nil

2D Array Example in Ruby

* Find the sum of all elements in a 2D array
def sumMatrix(table) number of rows in the table
: .~
for row in 0..table.length-1 do

for col in 0..table[row] .length-1 do
sum = sum + table[row][col]K\\

sum

end
number of columns in the

end given row of the table

return sum

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 12

Tracing the Nested Loop

for row in 0..table.length-1 do row col sum
for col in 0. .table[row] .length-1 do 0 0 1
sum = sum + table[row] [col] 0 1 3
end
end 0 2 6
0 3 10
O 1 2 13 1 0 15
1 1 21
O 1] 2| 3| 4 1 2 g
1| 5|6 | 7] 8 1 3 36
2 0 45
2 |9 10| 11 | 12
2 1 55
table.length = 3 2 2 66
2 3 78

table[row] .1length = 4 for every row

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Stacks

A stack is a data structure that works

on the principle of Last In First Out (LIFO).

— LIFO: The last item put on the stack is
the first item that can be taken off.

Common stack operations:

— Push — put a new element on to the
top of the stack

— Pop —remove the top element from the
top of the stack

Applications: calculators, compilers,
programming

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

14

RPN

Some modern calculators use Reverse Polish Notation
(RPN)

— Developed in 1920 by
Jan Lukasiewicz

— Computation of
mathematical formulas
can be done without
using any parentheses

— Example:
(3+4)*5=
becomes in RPN:
34+5*%

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

15

RPN Example

Convert the following standard mathematical
expression iInto RPN:

23 — 3) / (4 + 0)

/)ﬂ /7\

operandl operand2 operator operandl operand?2 operator

\ Y) \)
¢ %
23 3 — 4 6 + /

operandl operand? operator

Evaluating RPN with a Stack

- A
1< 0
X € Ali]
i Citl e
yes
_
no
—Txanumberr——
yes Pop top 2 numbers
Push x on S Perform operation S
Push result on S
Y v
Output |
Pop S / Answer: 2

Example Step by Step

* RPN: 23 3 = 4 6 +

e Stack Trace:

23 23 20 20 20 20

Stacks in Ruby

You can treat arrays (lists) as stacks in Ruby.

stack X

stack = [] []

stack.push (1) [1]
stack.push (2) (1, 2]
stack.push (3) (1,2, 3]

x = stack.pop /() (1, 2] 3

X = stack.pop () [1] 2

X = stack.pop () [] 1

X = stack.pop () nil nil

Queues

A queue is a data structure that
works on the principle of
First In First Out (FIFO).

— FIFO: The first item stored in the queue
is the first item that can be taken out.

Common queue operations:

— Enqueue — put a new element in to the
rear of the queue

— Dequeue — remove the first element
from the front of the queue

Applications: printers, simulations, networks

15110 Principles of Computing, 20
Carnegie Mellon University - CORTINA

) Y

RSSO R R R

.0.0.0.- R 2 ‘.0 = =

el AR

'’ ‘a'a's

UNIT 6B
Organizing Data: Hash Tables

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

21

Comparing Algorithms

* You are a professor and you want to find an exam
in a large pile of n exams.

 Search the pile using linear search.
— Per student: O(n)
— Total for n students: O(n?)

e Have an assistant sort the exams first by last name.
— Assistant’s work: O(n log n) using merge sort

— Professor:
. Search for one student: O(log n) using binary search
. Total for n students: O(n log n)

Another way

e Set up alarge number of “buckets”.

e Place each exam into a bucket based on some
function.

— Example: 100 buckets, each labeled with a value from 00
to 99. Use the student’s last two digits of their student ID
number to choose the bucket.
* |deally, if the exams get distributed evenly, there will
be only a few exams per bucket.
— Assistant: O(n) putting n exams into the buckets

— Professor: O(1) search for an exam by going directly to the
relevant bucket and searching through a few exams.

Strings and ASCII codes

s = "hello"
for i in 0..s.length-1 do

print s[i], "\n"

end
104 You can treat a string like an array
101 In Ruby.
108 If you access the ith character,
you get the ASCII code for that
108
character.

111

Hash table

e Let’s assume that we are going to store only lower
case strings into an array (hash table).

tablel = Array.new(26)

=> [nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil]

Hash table

We could pick the array position where each string
is stored based on the first letter of the string using
this hash function:

def h(string)
return string[0] - 97

end

The ASCII values of lowercase letters are:
“a” ->97, “b” ->98, “c” ->99, “d” -> 100, etc.

Inserting into Hash Table

* Toinsert into the hash table, we simply use the
hash function h to determine which index
(“bucket”) to store the element.

def insert(table, name)
table[h(name)] = name
end

insert (tablel, “aardvark”)

insert (tablel, “beaver”)

Hash function (cont’d)

 Using the hash function h:
— "aardvark” would be stored in an array at index O
— “beaver” would be stored in an array at index 1
— “kangaroo” would be stored in an array at index 10
— “whale” would be stored in an array at index 22

tablel

=> ["aardvark", "beaver'", nil, nil, nil,
nil, nil, nil, nil, nil, "kangaroo", nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, nil, "whale", nil, nil, nil]

Hash function (cont’d)

e Butif wetrytoinsert “bunny” and “bear” into the
hash table, each word overwrites the previous
word since they all hash to index 1:

>> insert (tablel, "bunny")
>> insert (tablel, "bear")
>> tablel

=> ["aardvark", "bear", nil, nil, nil, nil,
nil, nil, nil, nil, "kangaroo", nil, nil,
nil, nil, nil, nil, nil, nil, nil, nil,
nil, "whale", nil, nil, nil]

Revised Hash table

 Let’s make our hash table an array of arrays (an
array of “buckets”)

e Each bucket can hold more than one string.
table2 = Array.new(26)
for i in 0..25 do
table2[i] = []
end

= [, ., 1, t1, 1, 1, 11, 1, 1, [1,
(1, 1, 1, i, ti, i1, i1, 01, 01, [1,
(1, 1, 01, [1, [1, [1]

Revised insert function

def insert(table, key)
find the bucket (array) in the table
array using the hash function h
bucket = table[h (key)]
append the key string to the bucket
array
bucket << key

end

insert (table2,

>>
>>
>>
>>
>>
>>
=>

Inserting into new hash table

insert (table2,
insert (table2,
insert (table2,
insert (table?2,
insert (table2,
table2

[["aardvark"],

"bear"], [1, [1,
["kangaroo"],

(1, 01, 01, [1,

"aardvark")

"beaver")
"kangaroo")
"whale")
"bunny")

"bear")

["beaver", "bunny",

(1, 1, 01, 11, 11, [1,

(1, 1, 1, 1, 11, 1, [1,

["whale"], [1, [1, [l

Collisions

“beaver”, “bunny” and “bear” all end up in the same
bucket.

These are collisions in a hash table.

The more collisions you have in a bucket, the more
you have to search in the bucket to find the desired
element.

We want to try to minimize the collisions by creating
a hash function that distribute the keys (strings) into
different buckets as evenly as possible.

First Try

def h(string)
k =0
for i in 0..string.length-1 do
k = string[i] + k
end
return k
end
h (“hello”) => 532
h(“olleh”) => 532

Permutations still give same index (collision) and numbers are high.

Second Try

def h(string)
k =0
for i in 0..string.length-1 do
k = string[i] + k*256
end
return k
end
h (“hello”) => 448378203247
h(“olleh”) => 478560413032

Better, but numbers are still high. We probably don’t want to
(or can’t) create arrays that have indices this large.

Third Try

def h(string, tablesize)
k=0
for i in 0..string.length-1 do
k = string[i] + k*256
end
return k % tablesize

end

We can use the modulo operator to take the large
values and map them to indices for a smaller array.

Revised insert function

def insert(table, key)
find the bucket (array) in the table
array using the hash function h
bucket = table[h(key, table.length)]
append the key string to the bucket
array
bucket << key

end

Final results

table3 = Array.new(13)
for i in 0..12 do table3[i] = [] end

= [1r, r, ., ., 1, 1, i, 1, t1, 1, 1, [1,
[11]

>> insert(table3, "aardvark")
>> insert(table3, "bear")

Still have one
collision, but

>> insert(table3, "bunny") b-words are

>> insert (table3 , "beaver") distributed better.
>> insert (table3, "dog")

>> table3

=> [r, 1, i, tr, 1, 11, 11, 1, [1, ["bunny"],

["aardvark", "bear"], ["dog"], ["beaver"]]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 38

Searching in a hash table

To search for a key, use the hash function to find out which
bucket it should be in, if it is in the table at all.

def contains? (table, key)
bucket = table[h(key, table.length)]
for entry in bucket do
return true if entry == key
end
return false

end

Efficiency

* If the keys (strings) are distributed well throughout
the table, then each bucket will only have a few keys
and the search should take O(1) time.

e Example:
If we have a table of size 1000 and we hash 4000 keys
into the table and each bucket has approximately the
same number of keys (approx. 4), then a search will
only require us to look at approx. 4 keys => O(1)

— But, the distribution of keys is dependent on the keys and
the hash function we use!

