
UNIT 6A
Organizing Data: Lists

15110 Principles of Computing,

Carnegie Mellon University
1

Data Structure

• The organization of data is a very important issue for
computation.

• A data structure is a way of storing data in a computer so
that it can be used efficiently.

– Choosing the right data structure will allow us to
develop certain algorithms for that data that are more
efficient.

– An array (or list) is a very simple data structure for
holding a sequence of data.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

Arrays in Memory

• Typically, array elements are stored in adjacent memory
cells. The subscript (or index) is used to calculate an offset
to find the desired element.

• Example: data = [50, 42, 85, 71, 99]
Assume integers are stored using
4 bytes (32 bits).

• If we want data[3], the computer takes
the address of the start of the array
and adds the offset * the size of
an array element to find the
element we want.

• Do you see why the first index of an array is 0 now?
15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

Address Contents

100 50

104 42

108 85

112 71

116 99

Location of data[3] is 100 + 3*4 = 112

Arrays: Pros and Cons

• Pros:

– Access to an array element is fast since we can
compute its location quickly.

• Cons:

– If we want to insert or delete an element, we have
to shift subsequent elements which slows our
computation down.

– We need a large enough block of memory to hold
our array.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

Linked Lists

• Another data structure that stores a sequence of
data values is the linked list.

• Data values in a linked list do not have to be stored
in adjacent memory cells.

• To accommodate this feature, each data value has
an additional “pointer” that indicates where the
next data value is in computer memory.

• In order to use the linked list, we only need to
know where the first data value is stored.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Linked List Example

• Linked list to store the sequence: 50, 42, 85, 71, 99

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

address data next

100 42 148

108 99 0 (null)

116

124 50 100

132 71 108

140

148 85 132

156

Starting

Location of

List (head)

124

Assume each

integer and pointer

requires 4 bytes.

Linked List Example

• To insert a new element, we only need to change
a few pointers.

• Example:
Insert 20
after 42.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

address data next

100 42 156

108 99 0 (null)

116

124 50 100

132 71 108

140

148 85 132

156 20 148

Starting

Location of

List (head)

124

Drawing Linked Lists Abstractly

• L = [50, 42, 85, 71, 99]

• Inserting 20 after 42:

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

50 42 85 71 null 99

head

50 42 85 71 null 99

head

20

step 1 step 2

We link the new node

to the list before breaking

the existing link.

Linked Lists: Pros and Cons

• Pros:

– Inserting and deleting data does not require us to
move/shift subsequent data elements.

• Cons:

– If we want to access a specific element, we need
to traverse the list from the head of the list to find
it which can take longer than an array access.

– Linked lists require more memory. (Why?)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

Two-dimensional arrays

• Some data can be organized efficiently in a table
(also called a matrix or 2-dimensional array)

• Each cell is denoted
with two subscripts,
a row and column
indicator

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

B 0 1 2 3 4

0 3 18 43 49 65

1 14 30 32 53 75

2 9 28 38 50 73

3 10 24 37 58 62

4 7 19 40 46 66

B[2][3] = 50

2D Arrays in Ruby

data = [[1, 2, 3, 4],

 [5, 6, 7, 8],

 [9, 10, 11, 12]

]

data[0] => [1, 2, 3, 4]

data[1][2] => 7

data[2][5] => nil

data[4][2] => undefined method '[]' for nil

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

2D Array Example in Ruby

• Find the sum of all elements in a 2D array
def sumMatrix(table)

 sum = 0

 for row in 0..table.length-1 do

 for col in 0..table[row].length-1 do

 sum = sum + table[row][col]

 end

 end

 return sum

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

number of rows in the table

number of columns in the

given row of the table

Tracing the Nested Loop

row col sum

0 0 1

0 1 3

0 2 6

0 3 10

1 0 15

1 1 21

1 2 28

1 3 36

2 0 45

2 1 55

2 2 66

2 3 78

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

for row in 0..table.length-1 do

 for col in 0..table[row].length-1 do

 sum = sum + table[row][col]

 end

end

table.length = 3

table[row].length = 4 for every row

Stacks

• A stack is a data structure that works

on the principle of Last In First Out (LIFO).
– LIFO: The last item put on the stack is

the first item that can be taken off.

• Common stack operations:

– Push – put a new element on to the
top of the stack

– Pop – remove the top element from the
top of the stack

• Applications: calculators, compilers,
programming

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

RPN

• Some modern calculators use Reverse Polish Notation
(RPN)

– Developed in 1920 by
Jan Lukasiewicz

– Computation of
mathematical formulas
can be done without
using any parentheses

– Example:
(3 + 4) * 5 =
becomes in RPN:
3 4 + 5 *

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

RPN Example

Convert the following standard mathematical
expression into RPN:

 (23 – 3) / (4 + 6)

 23 3 – 4 6 +
operand1 operand2 operator operand1 operand2 operator

 23 3 – 4 6 + /
 operand1 operand2 operator

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

Evaluating RPN with a Stack

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

A

S

i == A.length?

Pop top 2 numbers

Perform operation

Push result on S
Push x on S

i 0

Output

Pop S

yes

no

A

x A[i]

Is x a number?

yes

no

i i + 1

23 – 3 =

20

23 3 - 4 6 + /

23

23 3 - 4 6 + /

3

23

23 3 - 4 6 + /

20

23 3 - 4 6 + /

4

20

23 3 - 4 6 + /

6

4

20

23 3 - 4 6 + /

20

4 + 6 =

10

10

20

23 3 - 4 6 + /

20 / 10

= 2

2

23 3 - 4 6 + /

Answer: 2

Example Step by Step

• RPN: 23 3 - 4 6 + /

• Stack Trace:

 6

 3 4 4 10

 23 23 20 20 20 20 2

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

Stacks in Ruby

• You can treat arrays (lists) as stacks in Ruby.
 stack x

 stack = [] []

 stack.push(1) [1]

 stack.push(2) [1,2]

 stack.push(3) [1,2,3]

 x = stack.pop() [1,2] 3

 x = stack.pop() [1] 2

 x = stack.pop() [] 1

 x = stack.pop() nil nil

 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

Queues

• A queue is a data structure that
works on the principle of
First In First Out (FIFO).

– FIFO: The first item stored in the queue
is the first item that can be taken out.

• Common queue operations:

– Enqueue – put a new element in to the
rear of the queue

– Dequeue – remove the first element
from the front of the queue

• Applications: printers, simulations, networks

 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

UNIT 6B
Organizing Data: Hash Tables

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
21

Comparing Algorithms

• You are a professor and you want to find an exam
in a large pile of n exams.

• Search the pile using linear search.
– Per student: O(n)

– Total for n students: O(n2)

• Have an assistant sort the exams first by last name.
– Assistant’s work: O(n log n) using merge sort

– Professor:
• Search for one student: O(log n) using binary search

• Total for n students: O(n log n)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
22

Another way

• Set up a large number of “buckets”.

• Place each exam into a bucket based on some
function.

– Example: 100 buckets, each labeled with a value from 00
to 99. Use the student’s last two digits of their student ID
number to choose the bucket.

• Ideally, if the exams get distributed evenly, there will
be only a few exams per bucket.

– Assistant: O(n) putting n exams into the buckets

– Professor: O(1) search for an exam by going directly to the
relevant bucket and searching through a few exams.

 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
23

Strings and ASCII codes

s = "hello"

for i in 0..s.length-1 do

 print s[i], "\n"

end

104

101

108

108

111

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
24

You can treat a string like an array

in Ruby.

If you access the ith character,

you get the ASCII code for that

character.

Hash table

• Let’s assume that we are going to store only lower
case strings into an array (hash table).

table1 = Array.new(26)

=> [nil, nil, nil, nil, nil, nil, nil, nil,

nil, nil, nil, nil, nil, nil, nil, nil,

nil, nil, nil, nil, nil, nil, nil, nil,

nil, nil]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
25

Hash table

• We could pick the array position where each string
is stored based on the first letter of the string using
this hash function:

def h(string)

 return string[0] - 97

end

The ASCII values of lowercase letters are:

“a” -> 97, “b” -> 98, “c” -> 99, “d” -> 100, etc.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
26

Inserting into Hash Table

• To insert into the hash table, we simply use the
hash function h to determine which index
(“bucket”) to store the element.

def insert(table, name)

 table[h(name)] = name

end

insert(table1, “aardvark”)

insert(table1, “beaver”) ...

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
27

Hash function (cont’d)

• Using the hash function h:

– “aardvark” would be stored in an array at index 0

– “beaver” would be stored in an array at index 1

– “kangaroo” would be stored in an array at index 10

– “whale” would be stored in an array at index 22

table1

=> ["aardvark", "beaver", nil, nil, nil,

nil, nil, nil, nil, nil, "kangaroo", nil,

nil, nil, nil, nil, nil, nil, nil, nil,

nil, nil, "whale", nil, nil, nil]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
28

Hash function (cont’d)

• But if we try to insert “bunny” and “bear” into the
hash table, each word overwrites the previous
word since they all hash to index 1:

>> insert(table1,"bunny")

>> insert(table1,"bear")

>> table1

=> ["aardvark", "bear", nil, nil, nil, nil,

nil, nil, nil, nil, "kangaroo", nil, nil,

nil, nil, nil, nil, nil, nil, nil, nil,

nil, "whale", nil, nil, nil]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
29

Revised Hash table

• Let’s make our hash table an array of arrays (an
array of “buckets”)

• Each bucket can hold more than one string.
table2 = Array.new(26)

for i in 0..25 do

 table2[i] = []

end

=> [[], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], []]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
30

Revised insert function

def insert(table, key)

 # find the bucket (array) in the table

 # array using the hash function h

 bucket = table[h(key)]

 # append the key string to the bucket

 # array

 bucket << key

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
31

Inserting into new hash table

insert(table2, "aardvark")

>> insert(table2, "beaver")

>> insert(table2, "kangaroo")

>> insert(table2, "whale")

>> insert(table2, "bunny")

>> insert(table2, "bear")

>> table2

=> [["aardvark"], ["beaver", "bunny",

"bear"], [], [], [], [], [], [], [], [],

["kangaroo"], [], [], [], [], [], [], [],

[], [], [], [], ["whale"], [], [], []]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
32

Collisions

• “beaver”, “bunny” and “bear” all end up in the same
bucket.

• These are collisions in a hash table.

• The more collisions you have in a bucket, the more
you have to search in the bucket to find the desired
element.

• We want to try to minimize the collisions by creating
a hash function that distribute the keys (strings) into
different buckets as evenly as possible.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
33

First Try

def h(string)

 k = 0

 for i in 0..string.length-1 do

 k = string[i] + k

 end

 return k

end

h(“hello”) => 532

h(“olleh”) => 532

Permutations still give same index (collision) and numbers are high.

 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
34

Second Try

def h(string)

 k = 0

 for i in 0..string.length-1 do

 k = string[i] + k*256

 end

 return k

end

h(“hello”) => 448378203247

h(“olleh”) => 478560413032

Better, but numbers are still high. We probably don’t want to
(or can’t) create arrays that have indices this large.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
35

Third Try

def h(string, tablesize)

 k = 0

 for i in 0..string.length-1 do

 k = string[i] + k*256

 end

 return k % tablesize

end

We can use the modulo operator to take the large
values and map them to indices for a smaller array.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
36

Revised insert function

def insert(table, key)

 # find the bucket (array) in the table

 # array using the hash function h

 bucket = table[h(key, table.length)]

 # append the key string to the bucket

 # array

 bucket << key

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
37

Final results

table3 = Array.new(13)

for i in 0..12 do table3[i] = [] end

=> [[], [], [], [], [], [], [], [], [], [], [], [],

[]]

>> insert(table3,"aardvark")

>> insert(table3,"bear")

>> insert(table3,"bunny")

>> insert(table3,"beaver")

>> insert(table3,"dog")

>> table3

=> [[], [], [], [], [], [], [], [], [], ["bunny"],

["aardvark", "bear"], ["dog"], ["beaver"]]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
38

Still have one

collision, but

b-words are

distributed better.

Searching in a hash table

To search for a key, use the hash function to find out which
bucket it should be in, if it is in the table at all.

def contains?(table, key)

 bucket = table[h(key,table.length)]

 for entry in bucket do

 return true if entry == key

 end

 return false

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
39

Efficiency

• If the keys (strings) are distributed well throughout
the table, then each bucket will only have a few keys
and the search should take O(1) time.

• Example:
If we have a table of size 1000 and we hash 4000 keys
into the table and each bucket has approximately the
same number of keys (approx. 4), then a search will
only require us to look at approx. 4 keys => O(1)

– But, the distribution of keys is dependent on the keys and
the hash function we use!

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
40

