Notes from the Boards Board Notes Set 23 Page

Images and the Graphics Window

Prior to- beginning the wovk with different pouwty of the
libraries, we spent time with classes. One reasow for that woas
to-provide some background whew we stowted this pout of the
work:. For the information here and for pawt of next week;
almost everything wovks withv classes. The furst pouwt of this will
work with the window in which we hawe beenw drawing stuff
sinceday 1. Thenw we will move to-awnv image that loads o .jpg
file. Thenw we move to-video. AW of these, the window, the
image; and the video- fall within the saume family tree of
classes. What we conv do- with the window, we can do-with thes
image ond the video. So; we awre doing the saume thing thiree
times.

The “Window”:

We howe wovked inside the “window” since day 1 whew yow
were sent out to-drow your inittals. We know how to-size the
window and how to-get the value of thewidth and height of the
window:

®00 sketch_nov16a | Processing 1.2.1 . sketch_novl1ba
00 void setup()
sketch_novl6a § + {
vold setup{) o
. size(200, 300);
size(200, 280); . o
printlng widen J; prmﬂn(width):
printlng height 3; . o
} printin(height):

-

The window has two-fields or variables naumed width and height.
Their defaudt values awre 100 but we cowv set thewm to- other

values by calling thessize() function. Nothing new here:..

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Board Notes Set 23 Page 2

Each element of the window iy called avpixel (contractiow of
pictwre element?®). The window declowed above iy 200 pixels
wide and 300 pixels high so- it has 60,000 pixels(200 X 300).
Somewhere invthe memory of the computer iy a sequence of
tronsistors delegated to- stove information about each pixels:
Such aveas are called buffers - inthis case, thevideo buffer.
This buffer must be large enoughv to- store the dato for 60,000
pixels: The datw for each pixel is oneint value. Thigint value
representy the alpha 2, red, blue, and green values for the pixel. To-
determine the red; greevy;, aond blue value; theint value con be
covwerted to- ity corvresponding hex value: The example below
shows these values for a blue window:

void Se‘l'up() sketch_novl6a

{
size(200, 300);
background(O, 0, 255):

loadPixels():

printin(pixels.length): 60000
printin(pixels[0]); -16776961
printin(hex(pixels[0])): FFOOOOFF

Since the entire window is blue; each pirel has the values for
blue: The computer’s memory nmust store the value for blue for
eachvpirel. We canv get av copy of this memory by calling the
loadPixels() function. This copies the color value inv The
computer’s memory for every pixel inthe window into-the
array named pixels. Thes we con print oy value inthe awray
using the[1 awray notation. Inthe code above; we print the
value of the zerotivelement of pixels. What we see is ov
mysteriousint value(-16776961). However, when we covwert
this to-the equivalent hex value things look more famiiowr. We
see 8 hex digity. If we group them i sety of two; we see’

FF 00 00 FF

! So.. where does the ‘x’ come from???
? This is the amount of translucence of the pixel.

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Board Notes Set 23 Page 3

Which awre the values of the alpha, red, green, and blue for the
pixel invthe upper left corner of the window. The base 10
equivalent of FF i5255. So-the settings for the pixel inthe upper
left corner are:

alpha == 255 or opaque

red == O or no red

u
u
B green == 0 or no green

B blue == 255 for all on (100% blue)

Note the/length of the pixel awrray - it has 60,000 elements.

Note that altering the array pixels does not directly alter the
memory invthe video buffer. There iy v way we con do-that -
but it comes later.

So-we now know that the window has thwee variables:

width height pixels

oand it has at least two- functions that couv worvk with those
vawriables:

size() loadPixels()

The “Image’’:

We know how to- create aPImage reference and reference it to-av
PImage object. We also-know how to-display the image it
references: SincePImage and the window awe invthe soumne
fomily tree of classes, we conv do-the saume thing withv a PImage
that we did to-the window. We can access the PImage'swidth
and length and we can get values stored in the image buffer
copied into-the image ypixel awray. This code is essentiodly the
same code that we looked at above:

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Board Notes Set 23 Page 4

Nov12NotesA

PImage p:

void setup()

{
size(400, 500);
background(200, 200, O):
p = loadImage("jim.jpg"):
image(p, 20, 20):

printin(p.width). 330
printin(p.height). 468
p. loadPixels():
printin(p.pixels.length). 154440
printin(p.pixels[0]). -14334880
printin(hex(p.pixels[0])). FF254460
}
Notice the following:
B Thelength of the awray is the saume as the product of thewidth
and length:

330 X 468 == 154440
B The functions that owe called ave the same BUT they have
the period o dot syntax that shows possession. We want the
widthv and height of p so-we use p.----- as the syntaw.

Suppose we want to-alter the actual datw in the image (the
window’s video-buffer)? Altering the pirel awrvay does not
directly alter the buffer. Remember, the avrray iy av copy of
what i invthe computer’s memory. If we woant to-do-this, we
wse the function.

updatePixels(): p.updatePixels();
which copies the contenty of the pixel arvay into-the buffer.

Another thing to- notice is the sige of the awray p.pixels. It is
154440 elementy long. Eachv element containg awvint. Inv
Processing; av singleint of informatiow stoved in memory
requires 32 transistors orv 32 bits (binawy digity) or 4 bytes (1
byte is composed of 8 bity). This means that the image in this
example requirves

4 X 154440 bytes of memory or 617760 bytes of memory.

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Board Notes Set 23 Page 5

Yet, if we look at the informatiow displayed in the folder that
show the size of the image file we see:

Name Dat...fied Da.. ted Size ¥ Kind
| data Today Today b8 KB Folder
*| jim.jpg 8/20/06 /.06 68 KB JPEG image
= NovlZNotesA.pde Today Today 4 KB Proce...ce File
The fle requires 68,000 bytes of space onthe disk. Why is the
arroy about 10 tumes lawrger?

617,760 vs 68,000
The reasow iy compression. The fle is avjpg file - pronounced
Jjay-peg. Thistype of flles is compressed. The compressiov
allows us to- stove very large files inv smaller spaces and to-
tronsfer them (madd, fetch, . . .) much quicker. It isthe case
that the compression used for . jpg files does cause some loss of
information. The rule s fairly simple. The more yow compress
the image (the smaller yow make the . jpg file) the move of the
original information yow lose.

Covwerting awv(x, y) coordinate of the image into-awnv
array index for the pixels arroy:
Shiffmouwv does av very nice job- explaining this invthe book: Sees
pages 262 thwough 264. The important thing to- remember iy
that any (x, y) coordinate inthe window or image cow be
covwerted to- an index of the pixels auwrovy for the widow ov
image with thisg awithunetic:

int index = (y* width) + x ; // for the window

int index = (y* p.width) + x ; // for the image

BUT - if yow awe using the vawriables mouseX ound mouseY to-
determine the(x, y) coordinates; yow MUST anchor the upper
corner of the image at the(0, 0) positiov of the window.
Assuwming the image iy anchorved at the (0, 0) position, this
code will use the mouse location to- determine the index.:

int index = (mouseY * p.width) + mouseX ; // for the image

Here is how we conv use this. The following shows Jim before
and after a fencing match

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards

Board Notes Set 23

Page

Novl2NotesA

Novl2NotesA

Here is the code that produced the changed image o the

right:

void draw()

{
image(p, 0, 0);
}

void mousePressed()

{
p.loadPixels():

int index = (mouseY * p.width) + mouseX;
p.pixels[index] = color(255, 0, 0);
p.pixels[index + 1] = color(255, 0, 0);

p.pixels[index + p.width] = color(255, 0, 0);
p.pixels[index + p.width + 1] = color(255, 0, 0):

p.updatePixels():
}

This code uses the mouse location to-find the index of the pixel
that was clicked and change four pixels to-red. The pixels that

awe changed are :

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Board Notes Set 23 Page 7

m thepixel clicked
p.pixels[index] = color(255, O, 0);

m the pirel that is the right neighbor
p.pixels[index + 1] = color(255, 0, 0):

B the pixel immediately below the pixel that was clicked,
p.pixels[index + p.width] = color(255, 0, O);

ity right neighbor

p.pixels[index + p.width + 1] = color(255, O, 0):

Notice the purple code. This is how we “get to-the next row.” By
adding the value of thewidth of the image; we move to-the
awrray element that has the color for the pixel that is directly
beneath the pixel represented by the[index] element. This is
important - yow should work this out onwpaper if yow do- not
under stand this.

Yow showld note that in this exaumple; the image has beesv
moved up and to-the left so- it is anchoved at the(0, 0)
coovdinate of the window.

Shiffmow's examples invthe book inv chapter 15 work withvthese
ideas. Ifyow are interested invexploring images, yow should
work withyhis examples. The cowrse web-page has a link to-the
texl’s welbr site where yow com download code for all of the
exaumples in the book:

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

