
Notes from the Boards Board Notes Set 20 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Noise
Random numbers are very useful to our work as programmers.
We have used them in a number of ways. In Processing we have
a luxury with the random() function. In case you forgot, the
random() function returns float values. There are two signatures
for calling random():

1. random(float) which returns a float value between zero
and up to but not including the value of the parameter

2. random(float, float) which returns a float value between
the first parameter and up to but not including the value
of the second parameter

In other programming languages (c, c++. Java), the random
function behaves very differently. It usually returns a decimal
value between zero and up to but not including one. We have
to add our own arithmetic to shift the random value into the
range we need.

The random values returned by the function have no obvious
relationship to the other random values. If they did, we could
“cheat” if we used the function in writing a game. But, what if
we wanted the next random number to be related to the
previous one is some manner? Below are two sets of 100 points
using randomly generated values of x and y by two different
types of random value functions:

By inspection, can you determine which plot was generated by
the random() function that we have used in class?

Notes from the Boards Board Notes Set 20 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

2

Hopefully you chose the right plot. Here is the code and output
for four runs of the code that generated the plot on the right:
void setup()
{
 size(400, 400);
 strokeWeight(4);
 background(204);
}
void draw()
{
 for(int i = 0; i < 100; i++)
 {
 float x = random(width) ;
 float y = random(height);
 point(x,y);
 }
 noLoop();
}

Here is the code and output of four runs for the code that
generated the output on the left:

Notes from the Boards Board Notes Set 20 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

3

float xoff = 0.0;
float yoff = 0.1;
void setup()
{
 size(400, 400);
 strokeWeight(4);
 background(204);
}
void draw()
{
 for(int i = 0; i < 100; i++)
 {
 xoff = xoff + .01;
 yoff = yoff + .02;
 float x = noise(xoff) * width;
 float y = noise(yoff) * height;
 point(x,y);
 }
 noLoop();
}

Notes from the Boards Board Notes Set 20 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

4

The x and y values for these points were genereated using
random values returned by Processing’s noise() function. In
these plots we can see that each newly returned value is related
in some manner to the previous value.

Processing’s documentation on the noise function gives you
some background. The technique (algorithm) used by the
function is named after the person, Ken Perlin who developed
it. According to Wikipedia, he won an Academy Award for
Technical Achievement from the Academy of Motion Picture
Arts and Sciences in 1997 for this contribution to the 1982
movie Tron. The technique is often called Perlin noise. It is
used today to generate such forms as clouds, water, and land
in computer generated images (CGI);

Here is the 100 actual values returned by Processing’s noise()
function from a run of the code shown above:
0.47986597
0.47786325
0.47457564
0.47013262
0.4649182
0.4584306
0.45160374
0.44444704
0.4371369
0.43020386
0.4227469
0.41610792
0.41012445
0.40498042
0.40107957
0.397246
0.3946676
0.3928898
0.3911529
0.3889251

0.38734418
0.38497344
0.38241827
0.378594
0.3734412
0.36913756
0.36484095
0.36187142
0.35876182
0.35682046
0.35456306
0.3529221
0.35262266
0.35166764
0.3516546
0.35109547
0.35063747
0.351169
0.3496812
0.34799734

0.34457532
0.34022632
0.33626893
0.33079487
0.3260786
0.3204948
0.31510687
0.31108323
0.30673426
0.30391735
0.30071595
0.2976696
0.29562092
0.29294428
0.29133168
0.28940663
0.28756848
0.28688917
0.285765
0.2858417

0.2859778
0.28613523
0.28753534
0.28880042
0.29141024
0.29445785
0.29743034
0.30148578
0.30505294
0.3093356
0.3136343
0.31714797
0.32103762
0.32395038
0.32705477
0.32991102
0.3319153
0.33411282
0.33558744
0.33721545

0.3384362
0.33882996
0.33896476
0.33845404
0.3378385
0.33660161
0.334685
0.33243567
0.33039266
0.32892138
0.3276147
0.32655683
0.3257497
0.32526538
0.32507545
0.32495114
0.32490528
0.32488447
0.32490966
0.32492584

Processing’s noise() function returns values between zero and
but not including 1.00 So our code must take this value and
scale it and shift it into the range we need. In the code above
the values needed are between zero and width or height so we do
not have to shift the returned value. But we do have to scale it.
Scaling is done in this code:
float x = noise(xoff) * width;
float y = noise(yoff) * height;

Notes from the Boards Board Notes Set 20 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

5

The value returned by noise() is scaled by multiplying it by the
width or height of the window. Since the returned value is
between zero and 100, this code is essentially using the
returned value as a percentage of the width or height.

The value returned by the noise() function differs for two
reasons. Each different run of the program causes a different
sequence of values. Here are two runs of a slightly modified
program. This program returns only ten values and the
parameter for the call is a constant.
 void draw()

{
 for(int i = 0; i < 10; i++)
 {
 println(noise(0.0));
 }
 noLoop();
}
run #1 run #2

As you can see, each run generated a different random value
but the ten returned values in each run are the same. The
difference between the returned values in an individual run is
controlled by the parameter of the call. A constant returns the
same value.

But what happens when the parameter’s value is altered by
different amounts. Here is three runs and the returned values
of another slightly modified version of the code that uses
different parameters for the call of the noise() function .

0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743
0.92410743

0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755
0.8696755

Notes from the Boards Board Notes Set 20 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

6

run #1 change = 0.1 run #2 change = 0.01 run #3 change = 0.001
void draw()
{
 float offSet = 0.0;
 for(int i = 0; i < 10; i++)
 {
 offSet = offSet + 0.1;
 println(noise(offSet));

 }
 noLoop();
}

void draw()
{
 float offSet = 0.0;
 for(int i = 0; i < 10; i++)
 {
 offSet = offSet + 0.01;
 println(noise(offSet));

 }
 noLoop();
}

void draw()
{
 float offSet = 0.0;
 for(int i = 0; i < 10; i++)
 {
 offSet = offSet + 0.001;
 println(noise(offSet));

 }
 noLoop();
}

0.67037326
0.55882114
0.472238
0.39287695
0.30840316
0.3161984
0.2899496
0.24448672
0.18861179
0.15002044

0.20696281
0.20643763
0.20557557
0.2044105
0.20304315
0.20134191
0.19955176
0.19767511
0.1957582
0.19394018

0.32957157
0.32957587
0.3295873
0.3295977
0.32961744
0.32964167
0.32967186
0.3296954
0.32972658
0.3297699

We can see that smaller incremental changes in the parameter
variable offSet generate smaller increments in the values
returned by the noise() function.

A detailed and in depth look at noise() is beyond a first look
that is being presented in class and in these notes. And, unlike
the rect() or point() functions, where a single reading and use
makes us an expert in using them, understanding the behavior
of the noise() function takes a great deal of thought, study, and
time working with it in code. The work should take into
account that there are three signatures for calling noise().
These values relate to the x, y, and z coordinates in noise space.
There is another function in Processing that is closely related
to the noise() function – noiseDetail(). This function gives us
more control over the values returned by the function.

Use noise() and work with it as you see fit, but watch your time.

