
Notes from the Boards Set BN 16 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Classes #1
These notes discuss the class code Set18. You should have that
code open as you read through this.

This set and the next two sets of notes concern the idea of
classes, objects, and OOP. You need to have a fairly clear idea
what these three terms mean. You are responsible for the ideas
presented in these notes. We will look at a lot of code in the
notes and in class but the use of this code is voluntary on your
part. You should explore these ideas if you feel they will be
useful in your work.

We will concentrate these notes on looking at a class – how it is
coded and how it is used. Open the files in the folder Class1.

To use a class in our code we need two files:

• the “client” file that “hires” the class to do some work. This
is same the file we have been writing for 11 weeks. It has
the setup() and draw() functions as well as keyPressed() and
mousePressed() if needed.

• the “server” file that provides the needed service. For this
code example the server has the variables and functions
to draw and move a colored square.

Here is a sample of the output the class generates:

The next page has the code for the Client file, Class1.pde:

Notes from the Boards Set BN 16 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

2

// Class1

Square s;

void setup()
{
 size(600, 600);

 s = new Square();

s.setup();

background(0);
}

void draw()
{
 s.move();
 s.draw();
}

This file/program is the client. It “hires” the Square class

To use a class we must declare a reference to an object of
the class in the way we declare a reference to an array.
Since s is a reference but no memory has been allocated, its
value at this time is null. See Figure A below.

Also similar to arrays, we have to “new” the class. This
“newing” allocates memory for the variables needed by the
class. This “newing” makes what we call the object, or in
this case the Square object. This Square object is
referenced by s. All of the variables in the Square object
are initialized by Java to zero or false or the null character
or null depending on the type of the variable.
See Figure B below.

Since all of the variables in the Square object must have
values that are useful, we must call a function to do that.
For now, we are going to use a setup() function. 1 See
Figure C below.

In order to use the object we must call its functions. Since
the functions are in another file (or class) we have to use
the possessive syntax just as we did with arrays when we

needed the value of the length of the array. The . is the
syntax for possession. so we call the move() and draw()
function “owned” by the Square object that s is referencing.

1 This is not the “proper” way to initialize the variables in the object. The “proper” way is to use a special
kind of function called a constructor. Shiffman explains this in the book and we will look at constructors
soon.

Notes from the Boards Set BN 16 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

3

Here are the figure referenced in the code on the previous page;

figure #A The Square reference, s is null

 s null

figure #B The Square reference, s has been newed. All of the variables
are initialized to zero.

 s

 X:0, y:0, edge:0, dX:0, dY:0 col: 0

figure #C The setup() function has been called. All of the variables
now have random values. These random values are shown below as 42.

 s

 X:42, y:42, edge:42, dX:42, dY:42 col: 42

We have to provide a definition of the class Square just like we
have to provide definitions of functions that we need but but
are not defined in the API.

The syntax for defining a class is much simpler than the syntax
for defining a function. The next page shows the definition of
the class, Square which is in the file, Square.pde.

Notes from the Boards Set BN 16 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

4

class Square

{

// fields or variables
 float x, y, edge, dX, dY;
 color col;

 // functions
 void setup()
 {
 x = random(10, 600);
 y = random(10, 600);
 edge = random(50, 200);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255),
 random(255),
 random(255));
 }

 void move()
 {
 x += dX;
 if (x + edge > width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y + edge > height || y < 0)
 {
 dY = -dY ;
 }
 }

To define a class, we start with the word,
class followed by the name of the class.
The name of the file containing the class
must be the same as the class name. The
name of this file is Square.pde.

The next syntax requirement is an open
brace. We must also put a corresponding
closing brace at the end of the file as the
last character in the file.

The rest looks like the code we have been
writing since day 2.

We list the global variables (often called
fields).

And we define any functions we need.
Here is our definition of the setup()
function which initializes the variables. In
this example, they are initialized to
random values.

If we wanted to designate the values of
some or all of the variables, we would use
parameters/argument in the call and
definition of the setup() function.

Here is the definition of the move
function. There is nothing new here.

Notes from the Boards Set BN 16 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

5

 void draw()
 {
 fill(col);
 rect(x, y, edge, edge);
 }
}

Here is the definition of the function
draw. Again, nothing is new here.

This is the closing brace of the class.

That is all there is to defining and using a class. Syntactically
is it much simpler than defining a function. The main
problem for most novice programmers is recognizing the
advantages of using a class and then designing the class. By
designing the class we mean to determine what variables are
needed and what functions must be defined. In this example,
it is reasonably straightforward. But, that is not always the
situation.

An Array of Object References
You should open the files in the folder Class2. We can build an
array of object references just as we would build an array of int
or an array of String references. Here is the output from a
program that has an array of 10 Square references:

The next page shows the code in the file Class2.pde :

Notes from the Boards Set BN 16 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

6

final int MAX = 10;

Square [] array;

void setup()
{
 size(600, 600);

 array = new Square[MAX];

 initArray();

 background(0);
}

void initArray()
{

 for (int i = 0; i < array.length; i++)
 {
 array[i] = new Square();

 array[i].setup();
 }
}

void draw()
{
 moveAndDrawAll();
}

This is a constant because of the word,
final. We use this to set the size or
dimension the array.

This declares a reference to the array of
Square references. Right now the
reference is null. See figure #1 below

This is the usual setup() function that
Processing calls.

This line allocates enough memory for 10
Square objects and assigns s to reference
the array. Each reference in the array is
null. See figure #2 below

Since the 10 individual Square references
are null, we must new each one of them.
We do this in a function called
initArray().

This function initializes the Square
objects referenced by the array’s
elements.
It traverses the array and

- news each element of the array creating
a Square object. See figure #3 below

- tells each element to execute its setup()
function to initialize its variables. See
Figure #4 below

To keep the draw() function “clean” we
call a function to move and draw the
squares.

Notes from the Boards Set BN 16 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

7

void moveAndDrawAll()
{
 for (int i = 0; i < array.length; i++)
 {
 array[i].move();
 array[i].draw();
 }
}

void keyPressed()
{
 initArray();
}

This function :

traverses the array and

- tells each Square object to move
- tells each Square object to draw itself

A key press will initialize the array of
Square objects.

Here are the figure referenced in the code;

figure #1 array is null

array null

figure #2 array has been newed with ten references to Squares. The
ten references are null

array

[0] null
[1] null
[2] null
[3] null
[4] null
[5] null

[6] null
[7] null
[8] null length

[9] null 10

Notes from the Boards Set BN 16 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

8

figure #3 The array has been traversed and each Square reference
has been newed. The values of the variables in each Square object are
set to zero.

array

[0] X:0, y:0, edge:0, dX:0, dY:0 col: 0
[1] X:0, y:0, edge:0, dX:0, dY:0 col: 0
[2] X:0, y:0, edge:0, dX:0, dY:0 col: 0
[3] X:0, y:0, edge:0, dX:0, dY:0 col: 0
[4] X:0, y:0, edge:0, dX:0, dY:0 col: 0
[5] X:0, y:0, edge:0, dX:0, dY:0 col: 0

[6] X:0, y:0, edge:0, dX:0, dY:0 col: 0
[7] X:0, y:0, edge:0, dX:0, dY:0 col: 0
[8] X:0, y:0, edge:0, dX:0, dY:0 col: 0 length

[9] X:0, y:0, edge:0, dX:0, dY:0 col: 0 10

Figure #4 The array has been traversed and setup() called for each
Square object. The variables now have random values. Here these
random values are shown as 42.

array

[0] X:42, y:42, edge:42, dX:42, dY:42 col: 42
[1] X:42, y:42, edge:42, dX:42, dY:42 col: 42
[2] X:42, y:42, edge:42, dX:42, dY:42 col: 42
[3] X:42, y:42, edge:42, dX:42, dY:42 col: 42
[4] X:42, y:42, edge:42, dX:42, dY:42 col: 42
[5] X:42, y:42, edge:42, dX:42, dY:42 col: 42
[6] X:42, y:42, edge:42, dX:42, dY:42 col: 42
[7] X:42, y:42, edge:42, dX:42, dY:42 col: 42
[8] X:42, y:42, edge:42, dX:42, dY:42 col: 42 length

[9] X:42, y:42, edge:42, dX:42, dY:42 col: 42 10

