Notes from the Boards set 14 Day 21 Page 18

Paut III: Another Way to-Buildd awnvArravy
This discussiow i related to-class code set 12C. Yow should have
that code obenv as yow read thwrougdv this.

One nice thing about awrrays and 15-102 is that we control the
data. We have not needed “outside” dato. We hawve had the
lry of initialiging the awvrays inv owr code:.
int [] numbers = {1, 5, 4}

We call this the initialiger list = which contains the values
needed i owr prograwm. Processing couwnty the number of
values inside the braces and makes the awrray exactly big
enough to- contoin the datw. It then copies the values of the
numbers invthe list into-the awray with the beginning value
being copied into-element| 0], the next value into-element[1],

. This works for any type of array.

Let’s change the playying field a bit. What if we want randow
values invthe awrray? We might do-this?

int [] numbers = {int(random(10)), int(random(10)),int(random(10)) };

This works but if we want awv awrray of 100 random numbers,
the code would get out of hand very quickly.

Theve iy another way! We can “new” the awrray. That's right, we
ave verbing avperfectly good adjective:.. sigh... Before we
continwe, let’s look at the syntox:
« First we buidd the awrray reference - no-array, just the
reference:
int [] numbers;
What we have is owv “empty” reference:. It i said to-benull.
We diagram it like this:

@Et{eﬁ)—r null

* Next, we build the awrray for numbers to-reference. For this
discussion, we want this arvay to-hawve just thiree elementy
but it could hawe any reasonable number of elements.

numbers = new int [3];

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 19

Now owr diagram looks like the traditional ooy
diagram we have used since the beginning of our work
withv awrowys:

/’(Elrnbe?i\
\‘ [01 [1]1 [2] lenath.
L oJofo] [3|

Since the array iy o global vawialble; the elementy are
initialiged to-zero.

Here iy the Processing program that does this:
int [] numbers;

void setup()

{
size(300, 300);
numbers = new int[3];
initArray(numbers);

}
We hawve to- write the code for the functiowinitArray(). The

definitiov ofinitArray() is below and it looks like code we have
beenv writing for several weeks:

void initArray(int [] anyArray)
{
for(int i = O; i < anyArray.length; i++)
{
anyArray[i] = int(random(100)):
}
}

For av discussion of code very similow to-the code ivvinitArray() or

for o review of awvays from the beginning, yow showld refer
back to-the boowrd notes and class code for 1001.

The printin() functionw actually printy the owray and ity contenty
with very nicely formatted output. Below is v slightly modified
versiov of the progrowm above and the output it generates:

| void setup() |

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page

size(300, 300);

printin("Printing array before we new it it:");
printin(numbers);

numbers = new int[3]:

printin("Printing array before we initialize it:");
printin(numbers);

initArray(numbers);

printin("Printing array after we initialize it:");
printin(numbers);

}
void initArray(int [] anyArray)
{
for(int i = O; i < anyArray.length; i++)
{
anyArray[i] = int(random(100)):
}
}
Here iy the output:

20

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page

Here iy code very similow to-what we wrote inv class:

final int MAX = 5; // € This is a constant

int[]a:
int []1b:
color [] col;

void setup()

{
size(300, 300);

a = new int [MAX]:
b = new int [MAX];
col = new color[MAX 1:

initializeIntegerArray(a):
initializeIntegerArray(b);
initializeColorArray();

drawBoxes();

}

void initializeIntegerArray(int [] anyArray)
{
for(int i = 0: i < anyArray.length; i++)
{
anyArray[i] = int(random(width)):
}
}

void initializeColorArray()
{
for(int i = O; i < col.length; i++)
{
col[i] = color(int(random(255)),
int(random(255)),
int(random(255))):
}
}

void drawBoxes()
{ for(int i = 0: i < a.length; i++)
{ fill(col[i]):
rect(a[i], b[i], random(width/5), random(height/5)):
, }

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 22

Here is the output from one ruw of this code:

endcodel020

This code uses the “newing” discussed invthe furst pages of this
paut of notes. Several things about some of the code: First, the
thrree cally to- initialige the arrays;
initializeIntegerArray(a);
initializeIntegerArray(b);
initializeColorArray().
Why do-the calls to-initializeIntegerArray() howe awnv awvrgument
while the call to-initializeColorArray()does not? The answer iy
that there are two- arrays of integer invthe program.

* We want to- use av single function to- initialige bothv of
them. Inovder to-do-this, we have to- use the argument
binding we hawe been talking about since we wrote owr
first function definitiow (drawIntials(int, int, int, int)).
For av review of this and how it works with awrays, yow
should refer back to-the notes for 1006.

* There iy only av single awrray of color so-the functiow
initializeColorArray() con directly access the awvay. Ifthere
were two- or more awrayy of color, we would have to- use

argument binding for this functiow.

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 23

One last ideav iy v concept of pawallel avvays. The thwee awrays
inthis code ave said to-be or described as “porallel awrovys.”
There inv nothing inthe syntox that makes the “pavallel.” They
awre pawrallel because of the way they awre used. We caw see this

void drawBoxes()

{
for(int i = 0; i < a.length; i++)
{
fill(col[i]):
rect(a[i], b[i], random(width/5), random(height/5)):
}

The awrrays owe parallel because the [iJth elementy of all three
arvays owe used to- drow the[ilthbox. Color col[0] is the colov of
the zeroth box. The geroth box usesal0] for ity x coordinate
value and bl0] for itsy coordinate value: It isthis relationship
invthe code that makes the arrays parallel.

If yow look at the class code set 11 Demo- 3, yow will find the
prograw of bouncing squares that Jim used to- introduce the
ideov of awrays. The code invthe progrowmm uses six parallel
arrays. Five of the awrays containvint values and the sixtiv
containg the colors:

int [] x, y, edge, dX, dY;

color[] col;
The code invthis prograw is very similow to-the code used irv
these notes.

One last thing inthispowt: constants. . .

We mentioned this one time last week but it iss wortiv repeating
it. The line of code invred onwpage 4 neowr the top is aconstant.
The “final” makes it avconstant. This is the syntox for declawing
ond initializing finals in Processing. When we use this “newing”
technique withy awrays, we should set the size of the awrays withv
a constant. Doing this alow us to-alter the arvay sige with o
single edit. By covwention; constant naumes are all uppercase
letters.

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

