
Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

18

Part III: Another Way to Build an Array
This discussion is related to class code set 12C. You should have
that code open as you read through this.

One nice thing about arrays and 15-102 is that we control the
data. We have not needed “outside” data. We have had the
luxury of initializing the arrays in our code.
 int [] numbers = { 1, 5, 4 };
We call this the initializer list which contains the values
needed in our program. Processing counts the number of
values inside the braces and makes the array exactly big
enough to contain the data. It then copies the values of the
numbers in the list into the array with the beginning value
being copied into element [0], the next value into element [1],
. . . This works for any type of array.

Let’s change the playing field a bit. What if we want random
values in the array? We might do this?
int [] numbers = {int(random(10)), int(random(10)),int(random(10)) };
This works but if we want an array of 100 random numbers,
the code would get out of hand very quickly.

There is another way! We can “new” the array. That’s right, we
are verbing a perfectly good adjective… sigh… Before we
continue, let’s look at the syntax:

• First we build the array reference – no array, just the
reference:
 int [] numbers;
What we have is an “empty” reference. It is said to be null.
We diagram it like this:

• Next, we build the array for numbers to reference. For this

discussion, we want this array to have just three elements
but it could have any reasonable number of elements.
 numbers = new int [3];

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

19

Now our diagram looks like the traditional array
diagram we have used since the beginning of our work
with arrays:

Since the array is a global variable, the elements are
initialized to zero.

Here is the Processing program that does this:

int [] numbers;

void setup()
{
 size(300, 300);
 numbers = new int[3];
 initArray(numbers);
}

We have to write the code for the function initArray(). The
definition of initArray() is below and it looks like code we have
been writing for several weeks:

void initArray(int [] anyArray)
{
 for(int i = 0; i < anyArray.length; i++)
 {
 anyArray[i] = int(random(100));
 }
}

For a discussion of code very similar to the code in initArray() or
for a review of arrays from the beginning, you should refer
back to the board notes and class code for 1001.

The println() function actually prints the array and its contents
with very nicely formatted output. Below is a slightly modified
version of the program above and the output it generates:

void setup()

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

20

{
 size(300, 300);
 println("Printing array before we new it it:");
 println(numbers);
 numbers = new int[3];
 println("Printing array before we initialize it:");
 println(numbers);
 initArray(numbers);
 println("Printing array after we initialize it:");
 println(numbers);
}

void initArray(int [] anyArray)
{
 for(int i = 0; i < anyArray.length; i++)
 {
 anyArray[i] = int(random(100));
 }
}

Here is the output:

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

21

Here is code very similar to what we wrote in class:
final int MAX = 5; //  This is a constant

int [] a;
int [] b;
color [] col;

void setup()
{
 size(300, 300);

 a = new int [MAX];
 b = new int [MAX];
 col = new color[MAX];

 initializeIntegerArray(a);
 initializeIntegerArray(b);
 initializeColorArray();

 drawBoxes();
}

void initializeIntegerArray(int [] anyArray)
{
 for(int i = 0; i < anyArray.length; i++)
 {
 anyArray[i] = int(random(width));
 }
}

void initializeColorArray()
{
 for(int i = 0; i < col.length; i++)
 {
 col[i] = color(int(random(255)),
 int(random(255)),
 int(random(255)));
 }
}

void drawBoxes()
{
 for(int i = 0; i < a.length; i++)
 {
 fill(col[i]);
 rect(a[i], b[i], random(width/5), random(height/5));
 }
}

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

22

Here is the output from one run of this code:

This code uses the “newing” discussed in the first pages of this
part of notes. Several things about some of the code: First, the
three calls to initialize the arrays;

 initializeIntegerArray(a);
 initializeIntegerArray(b);
 initializeColorArray();

Why do the calls to initializeIntegerArray() have an argument
while the call to initializeColorArray()does not? The answer is
that there are two arrays of integer in the program.

• We want to use a single function to initialize both of
them. In order to do this, we have to use the argument
binding we have been talking about since we wrote our
first function definition (drawIntials(int, int, int, int)).
For a review of this and how it works with arrays, you
should refer back to the notes for 1006.

• There is only a single array of color so the function
initializeColorArray() can directly access the array. If there
were two or more arrays of color, we would have to use
argument binding for this function.

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

23

One last idea is a concept of parallel arrays. The three arrays
in this code are said to be or described as “parallel arrays.”
There in nothing in the syntax that makes the “parallel.” They
are parallel because of the way they are used. We can see this
in the code in this function:
void drawBoxes()
{
 for(int i = 0; i < a.length; i++)
 {
 fill(col[i]);
 rect(a[i], b[i], random(width/5), random(height/5));
 }
The arrays are parallel because the [i]th elements of all three
arrays are used to draw the [i]th box. Color col[0] is the color of
the zeroth box. The zeroth box uses a[0] for its x coordinate
value and b[0] for its y coordinate value. It is this relationship
in the code that makes the arrays parallel.

If you look at the class code set 11 Demo 3, you will find the
program of bouncing squares that Jim used to introduce the
idea of arrays. The code in the program uses six parallel
arrays. Five of the arrays contain int values and the sixth
contains the colors:
 int [] x, y, edge, dX, dY;
 color[] col;
The code in this program is very similar to the code used in
these notes.

One last thing in this part: constants. . .
We mentioned this one time last week but it is worth repeating
it. The line of code in red on page 4 near the top is a constant.
The “final” makes it a constant. This is the syntax for declaring
and initializing finals in Processing. When we use this “newing”
technique with arrays, we should set the size of the arrays with
a constant. Doing this allow us to alter the array size with a
single edit. By convention, constant names are all uppercase
letters.

