
Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

7

Part II Arrays as arguments and return types:
This discussion is related to class code Set12B. You should have
that code open as you read through this.

This set of notes focuses on using arrays as arguments
and as return types. The last part is code for a type of
search called a filter.

You should read over the board notes bn14PartA and
revisit the first part of these notes if you are still foggy
on how to declare and initialize an array and how to
use a for loop to traverse the array and what we can do
when we visit each element of the array. These notes
assume you know what those terms mean.

We begin with two arrays of char:
char [] answers1 = { 'a', 'c', 'd', 'e', 'b', 'b', 'a', 'c', 'd', 'a' };
char [] answers2 = { 'c', 'c', 'e', 'b', 'a', 'b', 'd' };

Here is how we would draw Processing’s view of these
arrays:

The first two function calls print each array:
 printArray(answers1);
 printArray(answers2);

Processing does not make copies of the data for the
arguments in the definition as it would for primitive
variables. What Processing does is make copies the

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

8

arrow that connects the reference to the array. This
sounds very confusing so let’s make another drawing.

Here is how the program looks for this function call:
printArray(answers1);

When printArray is called with answers1 as the argument,
the argument answers in the definition is assigned to
reference the same array that answers1 references.
Using this diagram, when the function printArray ()
needs to know what the length of the array is, it
“follows” the reference arrow to the array and looks up
the length – which is 10. When the function is visiting
an element and needs to know the value of an element,
it does the same thing.

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

9

A similar picture forms for the second function call:
Here is how the program looks for this function call:
printArray(answers2);

For the second call where the argument is answers2,
Processing assigns the argument, answers in the
definition to reference the same array as answers2.
When it needs to know the length of the array, it follows
the arrow to the array and finds the length of this
array to be 7.

Some differences between arrays and primitive
variables:

- Arrays can have multiple values – primitive
variables can have only one value.

- Arrays can have multiple references to them –
primitive variables can have only one name.

If you are not sure what the for loop is doing or how it
is working in this code, you must refer back to the
previous set of class code or refer to Shiffman. The

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

10

execution of the for loop with the array is explained
and traced in detail.

Do not go on with this set of notes if you do not
understand how the loop and the array work together.
You will be wasting your time.

Next we have this line of code:
 char [] answersAll = concat(answers1, answers2);
The left side of the assignment operator is building a
new array reference. There is no array – just a
reference. The actual array is built and returned by
the function concat(). The concat() function is part of
the Processing API. The concat() function builds a new
array that contains the elements of the two arrays in
the argument list. The two arrays in the argumentr
list (answers1, answers2) are not modified or
destroyed. Their values are copied into the elements of
the new array. A reference to this new array is
returned to the right side of the assignment operator
where it is assigned to the array reference, answersAll.

There are a number of functions in the Processing API
that return references to new arrays. Some of these
might be useful to you in the last half of the semester.
You should explore these to see what they do and how
they work.

The next line of code is :
 char [] answersOdd = buildAnswersOdd(answersAll);
Here again, the left side of the assignment operator
builds a new array and returns a reference to it to be
assigned to answersOdd. Unlike the previous line, there
is no definition of buildAnswersOdd()in the Processing
API. We have to define it.

Here is the definition of buildAnswersOdd()

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

11

char [] buildAnswersOdd(char [] answers)
{
 char [] temp = { };
 for(int i = 1 ;i < answers.length ; i = i + 2)
 {
 {
 temp = append(temp, answers[i]);
 }
 }
 return temp;
}:
Here is a look at the parts of this definition:
char [] This is the return type. OK – why is this
function returning an array of char. The answer is
not a guess or the result of some form of mystical
reasoning. The answer is in the line of code where the
function is called:
char [] answersOdd = buildAnswersOdd(answersAll);

Read this from right to left. It reads as:
 “buildAnswersOdd()will return something to be
assigned to answersOdd.”
The next question is to ask is, “what is answersOdd?”
We continue to read from right to left:
char [] answersOdd
This reads as, “answersOddis an array of char.”

This tells us that the array buildAnswersOdd()must
return an array of char.

 char [] temp = { }; If we are going to return an array
of char, we must first build one. The reference temp is a
local variable. Processing does not initialize local
variables so we have to. This line of code initializes
the array reference temp to an array of char that is
empty. Its length at this point in the execution is zero.

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

12

 for(int i = 1 ;i < answers.length ; i = i + 2) The
function must build a new array containing the
elements of the odd indexes in the array referenced by
the argument. We can do this in different ways. Two
were done in class. In this example the loop starts at
element [1] instead of element [0]. It traverses and
visits every other element or the odd elements. Thi
happens because of the way the loop increments the
variable i. Instead of i++ which is the “usual” pattern, i
is incremented by 2 with this code: i = i + 2

temp = append(temp, answers[i]); The append() function is
in the Processing API. append() returns a reference to a
new array that contains all of the elements in the
array temp plus one new element at the end which has
the value of the element in answers[i]. (Read this over
several times). The reference to the new array is
assigned to temp. temp‘s old reference to the old array
is lost forever. Since there are no references to the old
array, it too, is lost forever.

The next page shows the structure of the arrays when
the value of the loop variable is 8 BUT before the
reference is returned:

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

13

Remember, this is before the append() function returns
the reference to the new array:

The next page shows the structure of the arrays after
the append() function has returned the reference to the
new array:

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

14

The array reference temp is no longer pointing to the 8
element array now shown in red. It is pointing to the
new array that contains all of the elements in the old
array plus one more – the value of element [8] in the
array referenced by answers. The old array now shown
in red that temp used to reference now has no

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

15

references. We can no longer access any of the values
stored in it. It is lost to us forever.1

This is somewhat complex. It is explained here to show
you that a reasonable set of events do occur when we
work with arrays. The more of this you understand, the
easier your work with arrays will be in the coming
weeks.

The last set of function calls:
 println("The number of a answers in answers1 is " + countLetter(answers1, 'a'));
 println("The number of b answers in answers2 is " + countLetter(answers2, 'b'));
 println("The number of c answers in answersOdd is " + countLetter(answersOdd, 'c'));

call a function that demonstrates one form of array
search called a filter. An array search occurs when we
traverse an array looking for something specific in the
array. There are two general types of array searches:

1. We are looking for one specific value or the first
occurrence of a specific value in the array. It may
or may not be there. If, and when we find it, we
can stop looking. This search is similar to you
looking for your keys or your id card in your room
when you have misplaced it. You stop looking when
you find it

2. We are looking for all occurrences of a specific
value in an array. We must traverse the entire
array and check every element. We cannot stop
when we find the first value. This is similar to your
searching for dirty laundry before heading down
to the laundry room. You do not stop when you
find the first pair of dirty socks. You have to look
everywhere in your room.

The second search is often called a filter. We are
filtering the array picking out certain values.

1 In the “old” days of programming, this was called a memory leak. If this occurred too
often, the program could crash because it ran out of available memory. Processing runs a
program called the garbage collector (yes, that is what it is called) that goes around
collecting up unreferenced arrays and returns the memory to the operating system so our
program will not run out of memory.

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

16

The function countLetter()must traverse the array and
count the number of times a specific character is in the
array. It is filtering the characters in the array
looking or a specific character.

Here is the code:
int countLetter(char [] answers, char letterToCount)
{
 int letterCount = 0;
 for(int i = 0 ; i < answers.length ; i++)
 {
 if (answers[i] == letterToCount)
 {
 letterCount++;
 }
 }
 return letterCount;
}
countLetter() must return a count of a specific
character. Since it is counting characters, the type of
the count should be int. We should not find half of an
‘x ’.

int letterCount = 0; We declare a variable to store the
count and initialize it to zero.

for(int i = 0 ; i < answers.length ; i++) We use the for
loop to traverse the entire array since the character we
are counting might be in any element.

 if (answers[i] == letterToCount) We visit each element
of the array and “ask” if it is the letter we are
counting. To ask the question, we use the if control
structure. If the [i]th element is equal to the letter we
are looking for, the expression evaluates to true.

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

17

letterCount++; If the expression is true, we increment the
variable we are using to store the count. If it is false,
we do nothing.

return letterCount; Finally we return the count of the
character we are looking for back to the call where it
is printed on the screen.

Final Thoughts on this part:
There is a lot here – a lot. Arrays are the basis of the
second exam. You need to work through this and the
code of these same days. If you do not understand any
part of all of this, please come to office hours held by
Jim or the CAs and do this soon. Week 9 or 10 is too
late.

