Notes from the Boards set 14 Day 21 Page 7

Part II Arrays as arguments and retur types:
This discussiow is related to- class code Set12B. Yow showld have
that code obenv as yow read thwrougdv this.

Thiy set of notes focuses onw uwsing arraysy ay argumeniy
and ay returw types. The last part iy code for a type of
seawrciv called av filter.

Yow shouwld read over the board notes bnl4PartA and
revisit the first port of these notes if yow are still foggy
ow how to- declare and initiolize aw array and how to-
wse av for loop to traverse the array and what we caw do-
whew we visit each element of the array. These notes
assume yow know what those terms meaw.

We beginw with two- arrays of chor:

char [] answersl = { 'a’', 'c', 'd', 'e', 'b', 'b', 'a’', '¢', 'd’, 'a' }:
char [] answers2 = { 'c', 'c', 'e', 'b', 'a', 'b', 'd' }:

Here iy how we would draw Processing’s view of these
arrovys:

answersl
___‘ [0] [1] [2] [3] [4] [5] [6] [71 [8] [S] length
Inl Icl Idl IEI Ibl Ibl Inl Icl Idl Inl 10
(answers2)
werse
NS 6

\ [0] (11 [2] (3] [4] [5] [é] length
‘e |'c|'e |'D'|'d|'D|'d 7

The first two- functiow cally print each arravy:
printArray(answersl);
printArray(answers2):

Processing doey not make copiey of the datw for the
argumenty inw the definitiow as it would for primitive
variables. What Processing does iy make copies the

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 8

arrow that connecty the reference to-the array. This
soundy very confusing so- let’s make another drawing.

Here is how the program looks for this functiow call:

printArray(answersl):

M[JGHSWEFSI ={Inl‘ Icl‘ Idl. IEI‘ Ibli IbI‘ Inl‘ Icli I'dl‘ Iul]-;

answersl
X (0] [1] [2] [31 [4] [5] [é] [71 [8] [S] length
'‘a' |'‘¢'|'d|'e|['B'|'P'|'a|'c|'d|"d 10
[

M[]ﬂﬂswer'sz ={ CI, |c|‘ |£|‘ |b|‘ |u|‘ |b|‘ |d|]_;

/”’__"““'x

answers2)
W% [0] [1] [2] 3] [4] [5] [6] length
‘¢ |'c'|'e ';b: ‘a' |'b'|'d’ 7

\

void printArray(char [] nnsﬁver-s)

{ for(int i = 0 ; i < answers.length ; is+)
{ rint(answers[i] + " ")

, W()i

Whew printArray is called with answersl ay the argument,
the argument answers iw the definitiow is assigned to-
reference the same array that answersl references.
Using thiy diagram, whew the functiow printArray ()
needs to- know what the length of the array is, €
“follows” the reference arrow to- the array and looks up
the length - which iy 10. Whew the functiow is visiting
aw element and needs to- know the value of anw element,
it doey the same thing.

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 9

A similar picture forms for the second functiow call:
Here is how the program looks for this functiow call:

printArray(answers2):

M[]nmmr‘sI ={ Inl‘ IcI‘ IdI‘ Ieli Ibl‘ IbI‘ InI‘ Icl‘ IdI‘ Ial };

\ [01 [1] [2] [3] [4] [5] [6] [7] [8] [S] length
o [[¢ [v[w]a [[a[a] [10]

&bgl\!:[]nnswer‘sz ={ Icl' Icl' Iel' Ibl‘ Inl‘ Ibli Idl };

% [0] [1] [2] [3] [4] [5] [6] length
[e e el w[wla] [7]

b\

void printArray(char [] answers)

{ for(int i =0 : i< answers.length : i++)
{ print(answers[i] + " ");

X ;!:!ZML&()i

For the second call where the argument iy answers2,
Processing assignsy the argument, answers iw the
definitiow to- reference the same array ay answers2.
Whew it needs to- know the length of the array, it followy
the arrow to- the array and finds the length of thiy
array to-be 7.

Some differences betweew arrayy and primitive
variables:
- Arroayy conw hawe muldtiple values - primitive
variables canw howe only one value.
- Arrayy conw have mudtiple referencey to- themw -
primifive varialles canw have only one name.

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 10

Next we hawve thiy line of code:

char [] answersAll = concat(answersl, answers2):
The left side of the assignment operator iy building o
new arroay reference. There iy no- array - just o
reference. The actuad array vy buidt and returned by
the functiowconcat(). The concat() functiow is part of
the Processing API. The concat() functionw bwilds a new
array that containg the elementy of the two- arrays inv
the argument list. The two- arrayy inv the argumentr
list (answersl, answers2) are not modified or
destroyed. Their values are copied into- the elementy of
the new array. A reference to thiy new arroy is
returned to- the right side of the assignment operator
where it iy assigned to-the array reference, answersAll.

There are o number of functions i the Processing API
that returw referencey to- new arrayy. Sowme of these
might be useful to- yow in the last half of the semester.
Yow should explore these to- see what they do- and how
they work.

The next line of code iy :

char [] answersOdd = buildAnswersOdd(answersAll);
Here again, the left side of the assignment operator
buidds v new array and refurnsg a reference to- it to- be
assigned to-answersOdd. Unlike the previous line, there
vy no- definitiow of buildAnswersOdd()inv the Processing
API. We have to- define if.

Here iy the definitiow of buildAnswersOdd()

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 11

char [] buildAnswersOdd(char [] answers)

{
char [] temp = { }:
{
{
temp = append(temp, answers[i]):
}
}
return temp:
}:

Here iy o look at the party of thisy definition:

char [] This iy the returw type. OK - why iy this
functiow returning aw array of char. The answer is
not a guessy or the result of some form of mystical
reasoning. The answer iy invv the line of code where the
functiow iy called:

char [] answersOdd = buildAnswersOdd(answersAll);

Read thisy from right to- left. It reads os:
“buildAnswersOodd()will return something to- be

assigned to-answersOdd.”

The next questiow iy to- ask iy, “what iy answersOdd ?”

We continume to- read fromw right to- left:

char [] answersOdd

Thisy reads as, “answersOddis an array of char.”

Thiy tells ws that the array buildAnswersOdd() must
returw aw awrravy of char.

char [] temp = { }; If we are going to- refturw aw array
of chawr, we must first build one. The reference temp is o
local variable. Processing doey not initialige local
variables so- we hawve to. Thiy line of code initializes
the array reference temp to- anw array of char that is
empty. Ity length at this point in the executiow is zero.

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 12

The
functiow must build o new array containing the
elementy of the odd indexes inv the array referenced by
the argument. We caw do- thisy iv different ways. Two-
were done iv classy. Inw thiy example the loop starty at
element instead of element [0]. It traversey and
visity every other element ovr the odd elementy. Thi
happens because of the way the loob incrementy the
variable i. Instead of which iy the “uwsual’ patterw,
iy incremented by 2 with thiy code:

temp = append(temp, answers[i]). The append() functiow is
inw the Processing API. append() returnsy a reference to- v
new array that containg all of the elementy in the
array temp pluy one new element at the end which hovy
the value of the element iw answers[i]. (Read thiy over
several times). The reference to-the new arroy is
assigned to-temp. temp’s old reference to- the old array
iy lost forever. Since there are no- referencey to- the old
array, it too, iy lost forever.

The next page shows the structure of the arrays whew
the value of the loop variable iy 8 BUT before the
reference iy returned:

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 13

Remember, this is before the append() functiow returns
the reference to-the new arroy:

value of i is 8
(answer'sAﬂ \

[0] [i] [2] [3] [4] (51 [61 [71 [8] [% [10] EII] [12] [13] [14] [15] [16] length
|'a:|'c|q,|s,lala|a,|c|d,a, e [% [a [® [9¢ | 17

01 (11 [21 [31 [41 [51 [6] 7
|'a,'|'c'|'d,'|'a,'|'kz,'|'b,'|a,|c|

char [1 buildAngwersOdd(char [] answers)
{
char [] temp = { }
for(int i=1:ic< ers.le pi=is2)
{
{
temp = append(temp, answers[i])
}
}
return temp:
]
[0] [11 [2] [31 [4 [51 [6] [71 1[8] lenath
(g [c[d e[[w[alc]de] [9]
4
char [] append(chdar []1a, char c)
{

char [] newArray = { };

// This code is hidden from us but it

// builds a new array reference and a new

// array that has the contents of the array a
// plus a new element at the end that has the
// value of the char ¢

The next page shows the structure of the arrays after
the append() functionw hay returned the reference to- the
new owrrovy:

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 14

value of i is 8

answersA
@ \

01 11 (21 (31 [4 [51 (6] [71 [8] ([[10]1 [11] ([12] ([13] [14] [15] [16] length,
[o [« Td [[® % [o < [dg]a [[[t [% [o [® [d¢ [[17]

[01 111121 | (3] [41] 151 (6] [71] | length
La e [glelo[olale] [8]

char [] buildAnswersOdd(char [] answers)
{
char [] temp = { }
for(int i =11 :i < ers.le Pi=ie2)
{ \
{ "\.
temp = append(temp, answers[i]):
] \'\.
} \'\.
return temp; |
]' "'\
\
1

01 11 (21 (3] [4 (5 (6] [71 [8] length

[ale g e[5 [wlele] [o]

4

char [] append(c7:‘r' [1a, char c)
{

char [] newArray = { };

// This code is hidden from us but it

// builds a new array reference and a new

// array that has the contents of the array a

// plus a new element at the end that has the

// value of the char c

The array reference temp iy no- longer pointing to-the 8
element array now showw iw red. It iy pointing to the
new array that containg all of the elements iv the old
array pluy one more - the value of element [8] in the
array referenced by answers. The old array now showw
iw red that temp uwsed to reference now has no-

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 15

references. We cow no- longer access any of the values
stored ivv €. It iy lost to- ws forever.!

Thiy is somewhat complex. It iy explained here to- show
yow that a reasonable set of eventy do- occur whew we
work withv arrayy. The more of thiy yow uwnderstand, the
easier your work withv arraysy will be ivw the coming
weeks.

The last set of functionw calls:

printin("The number of a answers in answersl is
printin("The number of b answers in answers2 is
printin("The number of c answers in answersOdd is

+ countlLetter(answersl, a'))
+ countlLetter(answers2, '‘b')):
+ countLetter(answersOdd, 'c')).

call v functiow that demonstratey one form of arroy

searchv called o filter. Aw array searchv occursy whew we

trawverse avw array looking for something specific iw the

array. There are two- general types of array searches:

1. We are looking for one specific value or the first
occurrence of o specific value iw the array. It may
or moy not be there. If, and whenw we find X, we
caw stop looking. Thiy searchv iy similar to- yow
looking for your keys or youwr id cowrd iw youwr roomw
whew yow hawve misplaced iX. Yow stop looking whew
yow find, iX
2. We are looking for all occurrences of o specific

value ivw aw array. We must traverse the entire
array and check every element. We cornwnmot stob
whew we find the first value. Thiy iy simidowr to- your
searchving for dirty lauwndry before heading doww
to- the lawndry room. Yow do- not stop whew yow
find the first pair of dirty socks. Yow have to- look
everywhere iw your room.

The second seawrch iy oftenw called av filter. We are

filtering the array picking out certaiv values.

" In the “old” days of programming, this was called a memory leak. If this occurred too
often, the program could crash because it ran out of available memory. Processing runs a
program called the garbage collector (yes, that is what it is called) that goes around
collecting up unreferenced arrays and returns the memory to the operating system so our
program will not run out of memory.

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 16

The functiow countLetter(Ymust traverse the array and
count the number of times a specific character is i the
array. It iy filtering the characters ivv the array
looking or a specific character.

Here iy the code:
int countLetter(char [] answers, char letterToCount)

{
int letterCount = O;

for(int i = 0 ; i < answers.length ; i++)
{
if (answers[i] == letterToCount)
{
letterCount++;
}
}

}

countlLetter() must returw o count of av specific
character. Since it iy counting characters, the type of
the count should beint. We should not find half of aw

€)

b

int letterCount = 0; We declare av variable to- store the
count and initialige it to- gero-

for(int i = 0 ;: i < answers.length : i++) We use the for
loop to traverse the entire array since the character we
are counting might be inv any element.

if (answers[i] == letterToCount) We vigit eachv element
of the array aond “ask’” Uf it Uy the letter we are
counting. To ask the question, we use the if control
structure. If the [i]th element iy equal to- the letter we
are looking for, the expression evaluatey to-true.

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards set 14 Day 21 Page 17

letterCount++: If the expressiow iy true, we increment the
variable we are using to- store the count. If it iy false,
we do- nothing.

Finally we returw the count of the
character we are looking for back to- the call where it
iy printed ow the screemw.

Final Thoughty ow thisy part:

There iy v lot here - o lot. Arrays are the busiy of the
second exam. Yow need to- work througiv this and the
code of these same doys. If yow do- not understand avny
port of all of this, please come to- office houry held by
Jimv or the CAy and do- this soonw. Week 9 or 10 iy too-
late.

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

