
Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Part I: Arrays Basics #2:
This discussion is related to class code set12A. You should have
that code open as you read through this.

The first line of the program:
 int [] numbers = { 3, 5, 8, 1, 3, -2, 4, 11, 7, 6 };
declares and initializes the array. Building arrays like this
must be done globally in one statement or it will not compile.
This line of code builds an array with a length of 10. The field,
numbers.length stores the value 10 which is the number of
elements in the array or the size of the array.

The pattern we follow for much of the array work involves using
a for loop to get to each value stored in the array. This is
called traversing the array. Unless specified otherwise, we
often begin with the element [0] and move to element
[length-1]. However, this is a pattern and some requirements
(as seen in the fourth example below) require starting and/or
stopping at other elements of the array.

The first example in the code prints the array on a single line.
Here is the function:
void printArray()
{
 println("Values in the array:");
 for (int i = 0 ; i < numbers.length ; i++)
 {
 print(numbers[i] + " ");
 }
 println();
}

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

2

Let’s trace the execution of the for loop:
 for (int i = 0 ; i < numbers.length ; i++)

Value
of i

Evaluation of test:
i < numbers.length

(length’s value is 10)

Array

element
being visited

Value of
array

element
being
visited

What the
visit does
with the
value

0 true [0] 3 Print it
1 true [1] 5 Print it
2 true [2] 8 Print it
3 true [3] 1 Print it
4 true [4] 3 Print it
5 true [5] -2 Print it
6 true [6] 4 Print it
7 true [7] 11 Print it
8 true [8] 7 Print it
9 true [9] 6 Print it
10 false

This rather verbose way of tracing the execution of the for loop
shows how Processing uses the for loop variable, i to access or
“visit” each element of the array. The word visit means that we
do something with the value stored in the array. The
“something” we do is specified in the problem we are solving.
The specification here was to print each element.

The second function in the code has the task of computing and
returning the average back to the draw() function where it was
called so it could be printed.
float getAverage()
{
 float sum = 0;
 for (int i = 0 ; i < numbers.length ; i++)
 {
 sum = sum + numbers[i] ;
 }
 return sum/numbers.length;
}

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

3

This function is not a void function because it must return the
average to draw() for printing. The reason the function returns
a float is because a fractional answer is often a better
representation of an average. The average of the values 1 and
2 is best represented by the value 1.5. If we use int values to do
this we get a different result:
 2 / 1  1
Remember the rules of integer division – the result must be iint.
Here is a similar tracing of the for loop:
for (int i = 0 ; i < numbers.length ; i++)

Value
of i

Evaluation
of test:

i <
numbers.
length

Array

element
being
visited

Value of
array

element
being
visited

What the
visit does

with the value

Value
of local
variable

sum

 0.0
0 true [0] 3 Add it to sum 3.0
1 true [1] 5 Add it to sum 8.0
2 true [2] 8 Add it to sum 16.0
3 true [3] 1 Add it to sum 17.0
4 true [4] 3 Add it to sum 20.0
5 true [5] -2 Add it to sum 18.2
6 true [6] 4 Add it to sum 22.0
7 true [7] 11 Add it to sum 33.0
8 true [8] 7 Add it to sum 40.0
9 true [9] 6 Add it to sum 46.0
10 false

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

4

The third example prints values in the array that are greater
than the average:
void printValuesGreaterThanAverage(float average)
{
 println("Values greater than the average of " + average + ": ");
 for (int i = 0 ; i < numbers.length ; i++)
 {
 if (numbers[i] > average)
 {
 print(numbers[i] + " ");
 }
 }
 println();
}
Here is a another trace of the for loop:
for (int i = 0 ; i < numbers.length ; i++)

Value
of i

Evaluation
of test:

i <
numbers.
length

Array

element
being
visited

Value of
array

element
being
visited

Evaluation of
test:

numbers[i] >
average

The average
is 4.6

What
this
visit
does
with
value

0 true [0] 3 false nothing
1 true [1] 5 true print it
2 true [2] 8 true print it
3 true [3] 1 false nothing
4 true [4] 3 false nothing
5 true [5] -2 false nothing
6 true [6] 4 false nothing
7 true [7] 11 true print it
8 true [8] 7 true print it
9 true [9] 6 true print it
10 false

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

5

The fourth example uses a different pattern in the for
loop. The for loop must begin at element [1] and stop at
element [numbers.length-1]. The reason is the task
specified in the name of the function:
 printValuesGreaterThanBothNeighbors()
To understand the task we have to define the term
neighbor. For this task a neighbor is an the element
that is either immediately before and after an array
element. For element [3], the neighbors are elements
[2] and [4]. Note that not all elements have two
neighbors. Element [0] and and element [length-1]
have only one neighbor(elements [1] and [length-2]
repsectively). This function must print only those
elements that have values greater than both neigbors.
Given the above, lets think about this… In order to
“qualify” for printing, an element must have two
neighbors. Elements [0] and [numbers.length] do not
have two neighbors. If our code tries to visit the
element before element [0] or after element
[numbers.length], the program will crash. So we have to
alter the pattern of the for loop. Here is the function
definition:
void printValuesGreaterThanBothNeighbors()
 {
 println("Values greater than both neighbors: ");
 for (int i = 1 ; i < numbers.length-1 ; i++)
 {
 if (numbers[i] > numbers[i-1] &&
 numbers[i] > numbers[i+1])
 {
 print(numbers[i] + " ");
 }
 }
 println();
 }

Notes from the Boards set 14 Day 21 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

6

For practice, we will let you trace the execution of the
for loop in this code:

Here is the array again so you do not have to flip back
and forth:
 int [] numbers = { 3, 5, 8, 1, 3, -2, 4, 11, 7, 6 };

for (int i = 1 ; i < numbers.length-1 ; i++)

Value
of i

Evaluation
of test:

i <
numbers.
length

Array

element
being
visited

Value of
array

element
being
visited

Evaluation of
test:

numbers[i] >
numbers[i-1]

&&
numbers[i] >
numbers[i+1]

What
this
visit
does
with
value

