
Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

1

The && Operator (The AND operator):
This refers to the class code Set 10 .

Our use of the if/else structure has been helpful. However, some
of you have had to use it in a very difficult manner. This was
because you had not yet been introduced to some syntax that
would have made your coding easier.

If you were trying to see if a click was within a rectangle, the
dist() function was not really useful.

Suppose we have a program that has a single button:

and that the location of the button is determined by the values
of these four variables:

int buttonLeftX, buttonRightX, buttonTopY, buttonBottomY;

Here is the code that we would have to write to see if the user
clicked inside the button:

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

2

if (mouseX >= buttonLeftX)
{
 if (mouseX <= buttonRightX)
 {
 if (mouseY >= buttonTopY)
 {
 if (mouseY <= buttonBottomY)
 {
 println("Button Clicked");
 }
 else
 {
 println("Button Missed");
 }
 }
 else
 {
 println("Button Missed");
 }
 }
 else
 {
 println("Button Missed");
 }
 }
This code works properly but it is structurally very ugly. It is
easy to misplace a brace and horrible to debug if it is wrong.
Some of you actually have written code like this.

There is a better way – we can use the logical AND operator
which is:

&&
This is two ampersands or what most people call the AND sign.

The logical AND in Processing works just like it did when you
studied it in your earlier math classes prior to arriving on the
shores of CMULand…(when you were young, healthy, carefree,
well fed, … Sorry – I digress…)

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

3

Using the && operator, this code can be written like this:
if (mouseX >= buttonLeftX && mouseX <= buttonRightX &&
 mouseY >= buttonTopY && mouseY <= buttonBottomY)
{
 println("Button Clicked");
}
else
{
 println("Button Missed");
}

Everything within the parentheses of the if is a single boolean
expression. It is composed of boolean sub-expressions that are
separated by the && operator. The entire expression evaluates
to true ONLY if all of the sub-expressions are true. If any one
(or more) of the sub-expressions is false, the entire expression is
false.

When the && operator is used, everything must be true for the
expression to evaluate to true. Any single evaluation to false
makes the entire expression false. It is , “all or nothing.”

This syntax is much easier to write, read, debug, and
understand.

There is a Logical OR operator. It is:

||
This operator is composed of two characters called pipes. On
Jim’s keyboard (a Mac), this key is the shifted character on the
backslash key under the delete key.

Supposed we reverse the test we made in the previous code. In
the previous code we tested to see if the user clicked inside the
button. Let’s write it to see if the user missed the button.

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

4

if (mouseX < buttonLeftX || mouseX > buttonRightX ||
 mouseY < buttonTopY || mouseY > buttonBottomY)
{
 println("Button Missed");
}
else
{
 println("Button Clicked");
}
The expression with the || operator evaluates to true if any one
or more of the sub-expressions is true. All of the sub-expressions
must be false before the entire expression evaluates to false.
In this code each sub-expression tests to see if the click is
outside of one side of the button’s boundaries. The only way
this entire expression can be false is if the user clicks inside the
button’s boundaries.

Using either the && operator or the || operator can simplify
your code. However, mixing them together can be a nightmare
because of precedence rules. You can avoid this by using
parentheses to force the order of evaluation that you want
Processing to follow. Coding with the && and/or the ||
operators is usually simpler if you write one sub-expression at a
time and test each one as you go. Attempting to write the
entire expression before compiling and testing can be a
difficult way to write you code.

Let’s look at a verbose version of the code Jim used in class to
demonstrate this.

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

5

void mousePressed()
{
 if (mouseY >= height*.89) // #1
 {
 if (mouseX >= 0 && mouseX <= width*.25) // #2
 {
 tint(255, 0, 0);
 }
 else if (mouseX >= width*.26 && mouseX <= width*.5) // #3
 {
 tint(0, 255, 0);
 }
 else if (mouseX >= width*.51 && mouseX <= width*.75) // #4
 {
 tint(0, 0, 255);
 }
 else // #5
 {
 tint(255);
 }
 }
}
#1 This is an outer if. It is testing to see if the user clicked in
the bottom 11% of the window where the buttons are located.

If the click was in the bottom 11% of the window, execution
moves into the braces and the first inner if (#2) is executed.
This if uses the && operator to see if the mouse was horizontally
within the bounds of the red button. Both sub-expressions must
be true for the test to be true. If the test is true, the tint is set to
red. If the test of the first inner if (#2) is false, then execution
moves to the next else-if (#3). The if checks to see if the click is
horizontally within the green button. If the test is true, the tint
is set to green. If it is false, execution moves to the next if-else
(#4). The if tests to see if the user clicked horizontally in the
blue button. If the test is true, the tint is set to blue.

Notice that there is no fourth inner if – just a stand-alone else
(#5) which is only executed if all three of the inner ifs are
false. Leaving out the fourth if is possible because the buttons
occupy the entire width of the window. Had Jim drawn the
buttons smaller than the width, the user could possibly click in
the bottom 11% of the window but not on a button. In this case
a fourth inner if to check for the NONE button would be
required.

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

6

Locating Places and Using Places on an Image
This refers to the class code Set 10 / Demo0:

Demo1 is showing you how to locate positions on an image.
This code is different from what was done in class. First, this
image has a clear copyright.

Let’s walk through the code.
PImage p;
int mousePressedCount;

void setup()
{
 size(800, 600);
 p = loadImage("p.jpg");
 println("Image width is " + p.width +
 " and height is " + p.height);
 image(p, 0, 0, width, height);
 fill(255);
 strokeWeight(5);
 fill(255, 0, 0);

 mousePressedCount = 0;
}
One difference is that there is a global variable of type int
named mousePressedCount that is initialized to zero in the setup()
function.

This variable is used here to label the println outputs.

The first thing to look at is the println. The + operator is used
here but not for adding. When the + operator has numbers as
operands, it adds. If one (or both) of it operands is inside “ “
marks, (this is called a String) the + operator does not add – it
concatenates1. Processing literally looks up the values of the

1 From Wikipedia: In computer programming, string concatenation is the operation of
joining two character strings end-to-end. For example, the strings "snow" and "ball" may
be concatenated to give "snowball".

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

7

variables and pastes them to the words in the quotation marks
to create a new string.

The second thing to look at are the dots or periods (shown in
purple):
println("Image width is " + p.width + " and height is " + p.height);

This is Processing’s form of possession. The variable p is really
an object of the class PImage (more on this in several weeks).
Unlike primitive variables like
int mousePressedCount which has three components:

- a name
- a type
- a value

Objects can have much more information associated with
them. They can even have their own functions. Along with the
actual picture that is displayed, the variable has its owns
width and height values. To get to these in our code, we have
to use a form of syntax that shows possession. In English we use
the apostrophe (or single quote) to do this:

- Jim’s class
- Da moose’s musings
- The students’ work

The apostrophe shows possession. The Processing equivalent is
the dot or period. The code, p.width
gives us the value of the image’s width. This is different than
plain width which is our program’s variable that stores the
width of the window.

We can use this println to see the size of the image and to get
an idea of the aspect ratio (width to height) that we need to
keep in mind if we want to display the image in a reasonable
manner.

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

8

The code in mousePressed is nothing special:
void mousePressed()
{
 mousePressedCount++;
 println("For mouse click # " + mousePressedCount +
 " -- mouseX: " + mouseX + " and mouseY: " +
 mouseY);
 point(mouseX, mouseY);
 text(mousePressedCount, mouseX, mouseY);
}

The first thing we see is that the value of the variable
mousePressedCount++;
is incremented by one. This is reasonable because the user has
clicked the mouse.

Next there is a println using the + operator to concatenate the
output showing the click number and the location of the
mouse.

The code then draws a point on the screen where the mouse was
clicked.

Finally, the point is labeled with the click number.

The next page shows the image and the console window during
one run:

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

9

The red numbers in the image correspond to the same mouse
click numbers in the console window.

The program Demo2 just uses some recorded mouse click values
(not the values shown above) to draw some vultures.

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

10

The program Demo3 shows a different method of animation
that does not require the frameCount or time. The animation is
this code is controlled by the mousePressed() function. It could
also be controlled by a similar keyPressed() function.

First, we see some global variables:
PImage p, p1;
int mousePressedCount;
The global variable int mousePressedCountwill be used to count
mousePress events.

The setup() function is very similar to the one in Demo1
discussed above so we will skip over that function. Let’s look at
the mousePressed() function:
void mousePressed()
{
 mousePressedCount++;
 if (mousePressedCount == 1)
 {
 image(p1, 301, 150-45, 40, 40);
 }
 else if (mousePressedCount == 2)
 {
 image(p1, 238, 146-45, 40, 40);
 }
 else if (mousePressedCount == 3)
 {
 image(p1, 169-10, 43-45, 40, 40);
 }
 else if (mousePressedCount == 4)
 {
 image(p1, 59-20, 66-45, 40, 40);
 }
 else if (mousePressedCount == 5)
 {
 image(p1, 404, 65-45, 40, 40);
 }
 else
 {
 text(" and it wasn't something good...", 20, 520);
 }
}

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

11

There is no animation going on. The window is never “erased”
with a new background or rectangle so we can use a very
simple if/else structure.

This set of cascaded if/else if/else … compares the value of the
mousePressedCount variable to constants from 1 to 5. For the one
value that is true, the p1 image is displayed at the location of a
former click.

Using magic numbers like this is very bad. We will learn a
better way to store these value very soon.

A New Form of Control – The Loop
This refers to the class code Set 10 Demo 4:

We have used one form of control – the if/else. This is a form of
control called selection or branching. This is discussed in
Board Notes beginning on 0915 and continuing on 0917. You
should refer to them if you are not comfortable with the if/else
structure.
A second group of control structures is the iterative group or
the loops. The term loop is used because the syntax forces
Processing to loop over a set of function calls until some
condition is met. There are three forms of iteration available
to Processing:

- the while loop
- the for loop
- the do loop

Processing ignores the do loop so we will do likewise.

The first loop is the while loop which has this form
While (boolean expression)
{

}

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

12

A better explanation might look like this
While (this evaluates to true)
{
 Do all of the stuff in here.
 When this is done,
 go back to the boolean expression and re-evaluate it
}

Here is the textbook naming of the parts of the while
While (loop guard or loop test – a boolean expression)
{
 loop body – any valid Processing code.
}
As long as the loop guard or test is true, the body of the loop is
executed. Once the loop guard or test evaluates to false, the
execution of the loop body stops.

Here is a run of the code in Demo4:

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

13

The border of vultures is drawn by while loops. Note that the
entire border is drawn before Processing reveals the frame.
Processing does not show us the frame until both loops stop and
all of the code in draw() or in functions called by draw() is
finished.

Here is the function that calls the function that draws the
border of vultures:
void setup()
{
 size(800, 600);
 p = loadImage("p.jpg");
 p1 = loadImage("vulture.jpg");

 println("Width of vulture is " + p1.width +
 " and the height is " + p1.height);

 image(p, 0, 0, width, height);
 text("Jim was beginning to get the idea that something
 else was up...", 60, 500);
 drawHengeVultures();
 drawFrame(); // draws the frame
}
and here is the code in the function drawFrame()
void drawFrame()
{
 // draw top and bottom frame row

 int x = 0;

 while(x < width)
 {
 image(p1, x, 0, width*.05, height*.06);
 image(p1, x, height - height*.06,
 width*.05, height*.06);
 x += int(width*.05);
 }

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

14

 // draw side frames
 int y = 0;
 while (y < height)
 {
 image(p1, 0, y, width*.05, height*.06);
 image(p1, width-width*.05, y,
 width*.05, height*.06);
 y += int(height*.06);
 }
}

There are two loops. One draws the top and bottom rows of
vultures and the other draws the vultures on both sides. (The
other random vultures are drawn at the location of mouse
clicks.)

Both use local variables initialized to zero:
 int x = 0;
This variable is local to this function and can only be used
here. The value can be passed as a parameter. These two
variables literally “walk” across and down the screen and are
used as part of the anchor point for the image. Let’s look at the
first loop:
int x = 0;
while(x < width)
 {
 image(p1, x, 0, width*.05, height*.06);
 image(p1, x, height - height*.06,
 width*.05, height*.06);
 x += int(width*.05);
 }

Actually, we begin before the loop with the declaration and
initialization of the variable x.

Next we see the while loop syntax. The boolean expression that
is the loop guard:

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

15

(x < width)
evaluates to true because the window is 800 pixels wide and the
value of x is zero. Since it is true execution moves into the loop
body:
 {
 image(p1, x, 0, width*.05, height*.06);
 image(p1, x, height - height*.06,
 width*.05, height*.06);
 x = x + int(width*.05);
 }
There are three statements in the body of the loop:

- the first two draw the image of the vulture along the top
and bottom of the window

- the third statement changes the value of x

The third statement is vital. By changing the value of x to a
larger value, it will eventually get larger than the value of the
width and the loop will stop or terminate.

If we leave this line out, the loop will iterate infinitely which is
usually a bad result.

This third line also “drives” the value of x across the screen
which means that we draw a new image at each new value of
x. The result is a line of vultures at the top of the screen.

Since both the top and bottom rows are the same length, we
can draw both lines of vultures within this loop’s body.

Look at the code in the second loop that draws the vertical
lines of vultures. You will see a very similar structure but in
this code, the variable is the y value of the location of the
image.

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

16

We can place any valid Processing code within the body of the
loop. Demo 5 is a slight modification of Friday4. Here is the
output:

In keeping with the recent Valentine season, Jim has replaced
the horizontal rows of vultures with rows of red and white
hearts. Here is just the code that draws the hearts:
void drawFrame()
{
 noStroke();
 int counter = 0;
 int x = 0;

 while (x < width)
 {
 if (counter%2 == 0)
 {
 fill(255, 0, 0); // red
 }
 else
 {
 fill(255); // white
 }
 drawHeart(x, int(height*.03));
 drawHeart(x, int(height-height*.03));

 x += width*.06;
 counter++;
 }
Jim wanted to alternate between red and white hearts. There
was no readily available data so he declared a variable
named counter to use just for the purpose.

Notes from the Boards Set # 12 Page

Copyright Jim Roberts June Pittsburgh, PA 15221 All Rights Reserved

17

This determination is done in the if/else that is inside the loop
body:
 while (x < width)
 {
 if (counter%2 == 0)
 {
 fill(255, 0, 0); // red
 }
 else
 {
 fill(255); // white
 }

This is a common way of alternating between two values. If the
counter is even (the if’s test evaluates to true), the color is red.
If the counter is odd, the color is white.

One last item in case you have forgotten or missed class on the
day this was disvussed:
This code above:
 drawHeart(x, int(height*.03));
 drawHeart(x, int(height-height*.03));
has code that results an integer value being copied into the
corresponding argument in the function definition of
drawHeart(int, int).

Processing as a function named int() which takes a float value
as an parameter and it returns a truncated int value.

