
Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

1

User Input
You have seen the mousePressed() and keyPressed()
functions in class. These are functions that WE define
but Processing calls when a key-press or mouse-press
event occurs.

This “usually” works well but not always. As we should
know by now, the draw() function is repeated and each
iteration produces a frame that we see in the graphics
window. What happens if we hold down the mouse
button or a key for several iterations? We need to do
some coding to find out. Here is the code:

void setup()
{
 size(200, 400);
}

void draw()
{
 println("in draw() : frameCount is " + frameCount);
}

void keyPressed()
{
 println(" in keyPressed() : frameCount is " + frameCount);
}
and here is part of the output when Jim held a key
down for several seconds:
in draw() : frameCount is 74
in draw() : frameCount is 75
in draw() : frameCount is 76
in draw() : frameCount is 77
 in keyPressed() : frameCount is 77
in draw() : frameCount is 78
in draw() : frameCount is 79
in draw() : frameCount is 80
in draw() : frameCount is 81
in draw() : frameCount is 82
in draw() : frameCount is 83
in draw() : frameCount is 84
in draw() : frameCount is 85

Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

2

Notice that the code in the keyPressed() function was
executed but only for one iteration. Jim held the key
down for at least two seconds or about 120 iterations.
We might have expected to see this:
 in draw() : frameCount is 77
 in keyPressed() : frameCount is 77
in draw() : frameCount is 78
 in keyPressed() : frameCount is 78
in draw() : frameCount is 79
 in keyPressed() : frameCount is 79
...
in draw() : frameCount is 197
 in keyPressed() : frameCount is 197
in draw() : frameCount is 198
 in keyPressed() : frameCount is 198

So we can conclude that the keyPressed() function is
called one time for each press during the frame in
which it is pressed. The event is ignored in subsequent
frames so that holding down the key does not cause the
function to be repeatedly called and executed.

The same is true for the mousePressed() function.

But what if we want to do something as long as a key is
held down or the mouse button is pressed. Asking the
user to press and release the key or button 60 times per
second sounds a bit unreasonable. . .

Oh what shall we do…???

The answer is held by two system variables that are of
the type, boolean. These are named:
 keyPressed and mousePressed
The are not functions – there are no parentheses . . .

Since these variables are boolean variables, the have
either the value of true or false:

- true when the button or a key is down
- false when the button or all keys are up

Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

3

So, we can use them to see if either the button or a key
is down.

Here is the Demo 5 code programs in Class Code Set 09
// Set 09 Class Code
// Demo 5

void setup()
{
 size(400, 400);
 textSize(14);
 textAlign(CENTER, CENTER);
 stroke(0, 0, 255);
 strokeWeight(5);
 background(255);
}

void draw()
{
 fil l(0);
 text("Press a Key ...", width/2, 30);
 stroke(0, 0, 255);

 checkKey();
 checkMouse();
}

void checkMouse()
{
 if (mousePressed == true)
 {
 line(mouseX, mouseY, pmouseX, pmouseY);
 }
}

void checkKey()
{
 if (keyPressed == true)
 {
 stroke(255, 0, 0);
 }
}

This first part is the usual stuff

For each iteration of draw we tell
Processing to execute these two functions

This is the definition of checkMouse()
where we test the system variable
mousePressed to see if it is true. If it is
true, we draw a line from the location of
the mouse in this frame back to the
location of the mouse in the previous
frame.

If the mouse button is not down, we draw
nothing. This works for every frame the
button is down.

We do the same thing in this function
using the keyPressed variable. If any key
is down, we change the color of the line
to red.

You should use the keyPressed() and mousePressed()
function if they will work and use the mousePressed and

Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

4

keyPressed()variables only when the function does not
accomplish what you need to do.

Here is the Demo 4 code programs in Class Code Set 09
Demo 4 introduced you to the map() function. The
map() function is very helpful in many ways. We can
use it to scale a value from one range to another.
Probably our most common mapping is temperature
when we convert temperatures in degrees Fahrenheit to
degrees in Celsius. We also map when we convert
currency from one form to another.

Mapping in our programming often uses the mouse
location in the window to determine a value for color
or rotation. We will do color next. Demo 5 mapped the
mouse’s location in the window to its corresponding
location in a box inside the window.

The larger yellow dot is the actual mouse location and
the smaller white dot is the mapped mouse location.
The mapped location is proportionally the same in the
green rectangle as the actual location is in the entire
window.

The map() function requires five arguments of either
float or int. Here is the line of code that maps the x
coordinate of the white dot based on the x coordinate
of the yellow dot:
 argument # 1 2 3 4 5
 int x = int(map(mouseX, 0, width, smallRectX, smallRectX+smallRectDim));
Let’s take the arguments one at a time:

Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

5

Arg 1 is the value we need to map – in this case it is the
x coordinate of the mouse.
Arg 2 is the smallest value the mouse can have -- in
this case this is the left edge of the window with a
coordinate value of zero.

Arg 3 is the largest value the mouse can have -- which
is the right edge of the window. It has a coordinate
value of 399.

Arg 4 is the smallest value of the range into which we
are mapping arg1. The inner box’s left edge has a
coordinate value of smallRectX pixels, which is 160.

Arg 5 is the smallest value of the range into which we
are mapping arg1. The inner box’s right edge has a
coordinate value of (smallRectX + mallRectDim) pixels,
which is 280.
// Friday February 11 Class Code
// Demo 5
// map function

color bigRectColor, smallRectColor;
color actualMouseLocationColor,
mappedMouseLocationColor;
int smallRectX, smallRectY, smallRectDim;

void setup()
{
 size(400, 400);

 bigRectColor = color(0);
 smallRectColor = color(18, 98, 3);

 actualMouseLocationColor =
 color(255, 255, 0);
 mappedMouseLocationColor =
 color(255);

 smallRectX = int(width*.4);
 smallRectY = int(height*.4);
 smallRectDim = int(width*.2);

 noCursor();
}

This is the usual stuff for a while

Until we get to here.

There are several different forms of
cursor we can use and we can turn it off
completely. Check the API for cursor.

Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

6

void draw()
{
 background(bigRectColor);
 fil l(smallRectColor);
 noStroke();
 rect(smallRectX, smallRectY,
 smallRectDim, smallRectDim);

 if (mousePressed == true)
 {
 showActualMouseLocation();
 showMappedMouseLocation();
 }
}

void showActualMouseLocation()
{
 stroke(actualMouseLocationColor);
 strokeWeight(8);
 point(mouseX, mouseY);
}

void showMappedMouseLocation()
{
 stroke(mappedMouseLocationColor);
 strokeWeight(3);
 int x =
 int(

 map(mouseX,
 0, width,
 smallRectX, smallRectX+smallRectDim));

 if (x < smallRectX)
 {
 x = smallRectX;
 }
 else if (x > smallRectX+smallRectDim)
 {
 x = smallRectX+smallRectDim;
 }

 int y = int(
 map(mouseY,
 0, height,
 smallRectY smallRectY+smallRectDim));
 if (y < smallRectY)
 {
 y = smallRectY;
 }
 else if (y > smallRectY+smallRectDim)
 {
 y = smallRectY+smallRectDim;
 }
 point(x, y);
}

We only map the mouse when the mouse
button is pressed.

This is called when the mouse button is
pressed.
It sets the color and size of the stroke
and draws a point at the location of the
mouse in the window.

This is also called when the button is
pushed.
It does the mapping of the mouse’s
location into the small green rectangle.
The map() function returns a float so we
have to use the int function to convert
the value to an int.
We are mapping mouseX
which has a value between zero and 400
inside the green rect which is 160 to 280.

The map() function does not limit the
values - it maps them. Jim’s testing
found that the mouse was tracked outside
the window on his machine so he added
this if/else if to keep the mapped value
between 160 and 280.

This is the same code mapping the mouse’s
y location into the green rect.

Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

7

Here is the Demo 6 code programs in Class Code Set 09
Demo 6 mapped the mouse location into a color value
for gray AND mapped the color into the location fo the
yellow line. A Quick Refresher – zero is black, 255 is
white, all values in between are gray. Here is the
mapping for a small value of mouseX:

Here is a mapping for a large value of mouseX:

The code is on the next page:

Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

8

// Friday February 11 Class Code
// Demo 6
// map function

color circleColor;
int circleX, c ircleY, circleDiameter;
int colorValue;
int barX, barY, barWidth, barHeight;

void setup()
{
 size(400, 400);
 circleX = width/2;
 circleY = int (height*.3);
 circleDiameter = int(width *.3);
 colorValue = 127;
 circleColor = color(colorValue);
 barX = int(width*.1);
 barY = int(height*.6);
 barWidth = int(.8*width);
 barHeight = int(.3*height);
}

void draw()
{
 background(0);
 circle();

 if (mousePressed)
 {
 mapMouse();
 }
 drawColorBar();
 showData();
}

void mapMouse()
{
 colorValue = int(map(mouseX,
 barX, barX + barWidth,
 0, 255));

 if (colorValue < 0)
 {
 colorValue = 0;
 }
 else if (colorValue > 255)
 {
 colorValue = 255 ;
 }
 circleColor = color(colorValue);
}

void drawColorBar()
{

Usual stuff

Lotsa’ global variables to keep the code
readable. . .

We only alter the color value if the
mouse button is down.

This maps the mouseX value into a color
value between 0 and 255.

If the user moves outside the bar, the
mapping can do strange things so we limit
the upper and lower values of the color
to 0 and 255.

Finally we set the value of the color
variable.

Notes from the Boards Set # 11 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

9

 noStroke();
 fil l(127);
 rect(barX, barY, barWidth, barHeight);
 stroke(255, 255, 0);
 strokeWeight(5);

 float x =
 map(colorValue,
 0, 255,
 barX, barX+barWidth) ;

 line(x, barY - 5, x, barY + barHeight + 5);
}

void circle()
{
 noStroke();
 fil l(circleColor);
 ellipse(circleX, circleY,
 circleDiameter, circleDiameter);
}

This is drawing the gray bar and a yellow
mark to show where the color value is in
the overall range from 0 to 255.

The map function is converting the
current colorValue which is between
0 and 255 into an X value in the range
between the left and right edges of the
bar.

Once the mapping is done, we can draw
the yellow line.

You may need to use the map function in some manner
of your choosing to allow the user to control some
aspects of the animation in your future work.

Get the class code and play with it to do different
things. Get to one of us soon if you are not sure what is
happening in this code.

