
Notes from the Boards Set #10 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Control Again (and Global Variables)

This is going to walk through the class code labeled
set08. You should get that code from the Class Code
link on the course web page.

Here is the first part of Jim’s code in Demo 1:
// Set 08 Demo 1
// More Control

int diameter, diameterChangeAmount;

void setup()
{
 size(400, 400);
 smooth();
 noStroke();
 diameter = 1;
 diameterChangeAmount = 1;

}

void draw()
{
 fil l(0, 0, 255);
 rect(0, 0, width, height);

 changeCircle(.75); // max percentage of the width
 drawCircle();
}
. . .

The first line of executable code is the global variable
declaration for diameter and diameterChangeAmount. Jim
made these global for several reasons:

• There values are needed for the entire run of the
program

• Their values are used in more than one function.
If he makes them local variables, their “life” is only as
long as the function is being executed. Once the
function is finished, the variables are destroyed and

Notes from the Boards Set #10 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

2

their values are lost. The other reason is that one
function cannot use another function’s variables. One
function can pass the values of its variables to another
function using parameter/argument binding but the
other function cannot actually change the original
value. More on this another day.

Next we see the function setup() where these two global
variables are initialized.

Then we see the draw() function. After the previous
frame is covered, we see two function calls. Jim has
defined these functions below in the program.

The parameter in the function call, changeCircle(.75)
represents the maximum percentage of the window’s
width to which the circle can expand.

Let’s look at more code:
void drawCircle()
{
 if (diameterChangeAmount > 0)
 {
 fil l (0, 255, 0);
 }
 else if (diameterChangeAmount < 0)
 {
 fil l (0, 0, 255);
 }
 else
 {
 fil l (255, 255, 0);
 }
 ell ipse(width/2, height/2, diameter, diameter);
}
This function definition is very straightforward. The
fill is :

• set to green if the diameterDeltaAmount variable
has a positive value

• set to blue if the diameterDeltaAmount variable
has a negative value

Notes from the Boards Set #10 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

3

• set to yellow if the diameterDeltaAmount variable
has a zero value

and the ellipse is drawn at the middle of the window.
The global variable diameter is used for the width and
height of the ellipse. By making diameter a global
variable, this function can use it as a parameter for
the call of the function ellipse.

The next function uses cascaded sequence of if/else
control syntax.
void changeCircle(float maxCircleSizePercent)
{
 diameter = diameter + diameterChangeAmount;
 if (diameter > width*maxCircleSizePercent)
 {
 diameterChangeAmount = -diameterChangeAmount;
 }
 else if (diameter <= 1)
 {
 diameterChangeAmount = -diameterChangeAmount;
 }
}
The argument in the header (the first line of the
function), maxCircleSizePercent receives its value from the
parameter in the call. The value of maxCircleSizePercent
is 0.75. This will be used to keep the circle smaller
than 75% of the window’s width.

The first line of code in the function definition (inside
the brace) is NOT an algebraic expression of equality.
It is an assignment statement. This code:
 diameter = diameter + diameterChangeAmount;
is read as:
 the new value of diameter is assigned the current value plus 0.75

This line of code causes the circle to grow or shrink on
screen.

Now we see a slightly different form of the if. It is what
we call a cascaded if/else. The else has its own if. This

Notes from the Boards Set #10 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

4

if is not nested because it is not inside the braces of the
else.
 if (diameter > width*maxCircleSizePercent)
 {
 diameterChangeAmount = -diameterChangeAmount;
 }
 else if (diameter <= 1)
 {
 diameterChangeAmount = -diameterChangeAmount;
 }
The first if checks to see if the circle is too big. If the
circle is too big, it must not be allowed to grow any
further – it must be shrunk. To do this we alter the
sign of the variable diameterChangeAmount to be negative.
If the diameter is not too big, we then see if it is too
small. The else is followed immediately by a second if.
This if is not nested within the else because it is not
within the braces of the else. This if is called a
cascaded if. It is only executed if the first if’s test
evaluates to false. This second if checks to see if the
circle is too small. If it is, it cannot be allowed to get
any smaller so we reverse the sign of
diameterChangeAmount from negative to positive.

You may be thinking that you should be able to do this
with a single if – you can. But we will do that another
day…

Finally, we added code to allow the user to speed up
and slow down the rate of expansion and shrinking of
the circle. Instead of mouse input, we used keyboard
input.

Keyboard input from the user will cause Processing to
call a keyPressed() function if we have it in our code.
The use can press two types of keys: printing keys such
as ‘a’ and non-printing keys such as the return or the
up-arrow. We are dealing only with the printing keys.

Notes from the Boards Set #10 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

5

If the user presses a printing key (e.g. ‘a’, ‘ ‘1, ‘1 ’, ‘$ ’),
the key that was pressed is stored in a new system
variable named key. This new system variable is of the
type, char. Variables of type char store one (and only
one) character.
void keyPressed ()
{
 if (key == 'f')
 {
 diameterChangeAmount = diameterChangeAmount * 2;
 }
 else if (key == 's')
 {
 diameterChangeAmount = diameterChangeAmount / 2;
 }
 else
 {
 diameterChangeAmount = 1;
 }
}
 This was our code after two edits. The first if looks to
see if the user pressed the ‘f ’ key. When that happens,
the variable that is controlling the speed of the growth
or shrink rate of the circle is doubled.

If the user did not press the ‘f ’ key, the second if checks
to see if the user pressed the ‘s ’ key. When that happens
the variable that is controlling the speed of the growth
or shrink rate of the circle is halved.

Unfortunately, we hit a problem. When the value of
diameterChangeAmount was 1 and we divided it by 2, we
ended up with a diameterChangeAmount value of zero and
nothing further happened. So we added a second else
to respond to any other key press. This second else is
executed only when both ifs are false.

1 This is the char space. The char space can be assigned to a variable or tested for in an if
by typing the following characters: single-quote space-bar single-quote -- it
works.

Notes from the Boards Set #10 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

6

Global Variables Again:
The global variables diameter and diameterChangeAmount
are used throughout the entire program. Their values
are needed for every iteration of draw().

The global variable diameter is used by these functions:
setup(), changeCircle(), drawCircle().

The global variable diameterChangeAmount is used by
these functions: setup(), keyPressed(), changeCircle().

The fact that the values of the two variables are needed
throughout the execution of the program and that they
must be used by multiple functions requires that they
be declared as global variables and not
parameters/arguments or local variables.

