
Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Control
We have animated our program by using arithmetic
coupled with the variable frameCount. Using this
technique in various ways, we can create some very
interesting movement patterns. If we add the random()
function and, possibly the millis() function, we can do
much more. But what if we want to respond to input by
the user from either the keyboard or the mouse or input
of some other form from some other source (the net
possibly)? We need more tools in our tool kit. One of
these tools is the control syntax.

Control refers to a group of syntactic structures in the
language that allows the program to “control” or
decide

• which functions to call and which ones to skip
• how many time to repeat a function call or group

of function calls
The first bullet uses control structures we describe as
“selection” or “branching” control structures. This is
where we start. We will return to the second bullet’s
structures (the looping or iterative control structures)
in a few days. The control syntax for selection is the if.
It has several forms:
if (test or guard)
{
 do this if the test is true
}

do nothing if the test is false

Tthere is only one branch here –
the if branch. Based on the test,
Procssing will either select the if
branch or select nothing

if (test or guard)
{
 do this if the test is true
}
else
{
 do this if the test is false
}
There are two branchs here: the if
and the else. Based on the test,
Processing will select only one of
these two branches. We say that,
“The execution of the program flows
through either the if or the else
branch but not both of them.”

Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

2

The test or guard must evaluate to a value of true or
false. It cannot evaluate to an int or float value. It
must be evaluate to true or false.

Expressions that evaluate to true or false are called
boolean expressions in Processing. The b is lower case.

• We can declare boolean variables:
 boolean b = false;

• We can define functions that have a boolean
return type:

 boolean weHitTheTarget(int x, int y)
 {
 . . .
 }

• We can use boolean expressions with the relational
operators that you used in your earlier math
classes;

Operator Meaning
== Equality
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
!= Not equal

Note that the operators composed of two characters
MUST NOT have a space between the two characters.
The equality operator is two equal signs. One equal
sign is the assignment operator.

• We can also use the relational operators to
combine Boolean expressions.

Operator Meaning
&& AND
|| OR
! NOT

Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

3

For the next discussion of the if control structure
below, we will use boolean expressions. In a later set of
notes, we will use boolean variables and boolean
functions.

Here are programs that demonstrate the use the if:
int x, y;

void setup()
{
 size(400, 400);
 textSize(24);
 fil l(0);
 background(200, 200, 0);

 x = 100;
 y = 101;
}

void draw()
{
 demoIf();
 noLoop();
}

void demoIf()
{
 text("Testing if x > y: ", 20, 50);
 if (x > y)
 {
 text("x is larger than y" , 20, 100);
 }
 text("Test is complete ", 20, 150);
}

In the program above, the boolean expression that
makes up test or guard of the if evaluates to false
because x is less than y. Since the test is false, the code
inside the braces is skipped. It is not selected. It is not
executed.

Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

4

In this next program, the value of x is larger than the
value of y:
int x, y;

void setup()
{
 size(400, 400);
 textSize(24);
 fil l(0);
 background(200, 200, 0);

 x = 100;
 y = 101;
}

void draw()
{
 demoIf();
 noLoop();
}

void demoIf()
{
 text("Testing if x > y: ", 20, 50);
 if (x > y)
 {
 text("x is larger than y" , 20, 100);
 }
 text("Test is complete ", 20, 150);
}

In the program above, the test evaluates to true so the
code within the braces is selected. The code with the
braces is executed and we see a different output.

Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

5

Next we switch to the other form: if/else:
int x, y;

void setup()
{
 size(400, 400);
 textSize(24);
 fil l(0);
 background(200, 200, 0);

 x = 100;
 y = 101;
}

void draw()
{
 demoIf();
 noLoop();
}

void demoIf()
{
 text("Testing if x > y: ", 20, 50);
 if (x > y)
 {
 text("x is larger than y" , 20, 100);
 }
 else
 {
 text ("x is NOT larger than y" ,
 20, 100);
 }
 text("Test is complete ", 20, 150);
}

The value of x is less than y so the test is false. The
program now has an else as part of the if. The else is
executed when the test evaluates to false as shown in
the output to the right.

Question: What happens if x and y are equal???
Code it and see before reading further. . .

Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

6

Here is the code and how it is executed when the values
of x and y are different
int x, y;

void setup()
{
 size(400, 400);
 textSize(24);
 fil l(0);
 background(200, 200, 0);

 x = 100;
 y = 101;
}

void draw()
{
 demoIf();
 noLoop();
}

void demoIf()
{
 text("Testing if x > y: ", 20, 50);
 if (x > y)
 {
 text("x is larger than y" , 20, 100);
 }
 else if (x < y)
 {
 text ("x is NOT larger than y" , 20, 100);
 }
 else
 {
 text ("x EQUAL to y" , 20, 100);
 }

 text("Test is complete ", 20, 150);
}

Assume
this:

x = 200;
Y = 100

|
|
|
|
|
|
|
|
|

true
|

do this
|

skip this
|
|
|
|
|
|

to here
|

do this

Assume
this:

x = 100;
Y = 200

|
|
|
|
|
|
|
|
|
|

false
|

skip this
|

true
|

do this
|

skip this
|
|

to here
|

do this

Assume
this:

x = 100;
Y = 100

|
|
|
|
|
|
|
|
|
|

false
|

skip this
|

false
|

skip this
|
|
|

do this
|
|

do this

The third if is not needed. In this example there are
only three possibilities: x > y, x < y, x == y. If the first
two possibilities are false, then the third one must be
true. This means that we do not need to make the
third test:
 if (x == y)

Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

7

Two more things:
We can put ifs within other ifs and other elses.

 if ()
 {
 if()
 {

 }
 else
 {

 }
 }
 else
 {
 if()
 {

 }
 }
This is called nesting.
The if/else that is colored blue and red is the outer if (
or outer if/else…)
The orange if/else is nested within the outer if.
The green if is nested within the outer else.

You can combine these in any reasonable way that is
needed to solve the problem.

Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

8

We can also “cascade” a series of if/elses . You saw this
back on page 6 and it will be very common in our
code.
if ()
{

}
else if()
{

}
else if
{

}
else
{

}

When the test in the first if is true, the code inside the
braces of the first if is executed and rest of the code in
the entire if is finished. No more code (the tests or the
code in the braces) is executed.
When the test in the first if is false, execution shifts to
the test in the second if.

When the test of the second if is true, the code within
the braces of the second if is executed and the rest of
the code is skipped
When the tests in both the first and second ifs are
false, execution shifts to the third if.

When the test of the third if is true, the code within
the braces of the third if is executed. When the
test is false, the code within the else of the third if
is executed.

You will see a cascaded if/else structure very soon in
your code.

Notes from the Boards Set #9 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

9

You may be wondering why these are called cascaded.
The reason is the way “we used to format them” in the
code. In the distant past the code might have looked
like this:

if ()
{

}
 else
 if()
 {

 }
 else
 if
 {

 }
 else
 {

 }

Sorta’ like a waterfall. . .

