
Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Yes, this stuff is also on the exam.
Know it well.
Bring your questions to class.

A Not-So-Quick review of the last set of notes…
System variables:
There are a number of variables declared and initialized by
Processing. We have seen two thus far:

• width – which is the horizontal length of the screen.
• height – which is the vertical length of the screen.

A general rule for system variables is to use them but never
change them. Violate this rule at your own risk…

Global variables:
You have used global variables since Homework #2 when you
declared either
 float x, y, wd, ht;
The term “global” means that these variables can be used
anywhere in your code at any time.

=====================
New in Homework #4
You have to write function definitions.

A function definition tells Processing exactly what to do when
the function is called.

Two functions, that Processing will call if we define them in our
code :
- setup(). It is called by Processing and executed AFTER the
global variables are declared and initialized.
- draw(). It is called and executed when Processing finishes
executing setup().

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

2

Here is one possible definition of the setup() function
void setup()
{
 size(400, 400);
 background(#000000);
 smooth();
 fill(200, 200, 0);
}

The physical forms of all function definitions resemble this one.
This definition tells Processing that when this function is
executed it has to:

1. set the size of the window to 400 x 400
2. make the background black (this is the hex value for

black)
3. turn on smoothing.
4. set the fill to yellow

The physical components of the function are labeled below:

< --------------- This entire line is the function header ------------------------ >
void setup ()
function return type function name argument list (which is empty)

{ opening brace to mark the start of the code in the definition

 list of what to do when the function is called
 size(400, 400);
 background(#000000);
 smooth();
 fill(200, 200, 0.);

} closing brace to mark the end of the function definition

When you use the setup() function, the first line after the
opening brace MUST be a call to size()! Violate this rule and
your web page will not show your program.

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

3

The physical form of the draw() function is identical: to that of
the function setup() as shown below:
void draw()
{
 rect(width/2, height/2, .2*width, .3*height);
}

If a function is not defined in Processing’s API, then we have to
define it for Processing. The funcition drawTarget() is not in
Processing’s API.
float diameter;
void setup()
{
 size(400, 400); // This MUST be the first line.
 smooth();
 background(255, 255, 0);

 radius = 10;
}

void draw()
{
 drawTarget(100, 150);
 drawTarget(200, 150);
 drawTarget(100, 350);
}

void drawTarget(float x, float y) // function definition
{
 fill(255, 0, 0);
 ellipse(x, y, diameter*3, diameter*3);
 fill(0, 255, 0);
 ellipse(x, y, diameter*2, diameter*2);
 fill(0, 0, 255);
 ellipse(x, y, diameter, diameter);
}
Here is the output from the execution of this program:

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

4

The function drawTarget() is not part of Processing, so
Processing has no idea what drawTarget() means unless Jim
provides the definition of drawTarget(). This definition is
written in the code in the exact same physical form as the
definition of setup() and draw().

There are two differences:

• Jim must call drawTarget() if he wants Processing to
execute it.

• There is “stuff” inside the parentheses of the definition.
We will look at that “stuff” in a minute.

When Processing executes the draw() function, it encounters the
function call:
 drawTarget(100, 150);
Processing looks at its own personal list of function definitions
in its API and does not find anything called
 void drawTarget(float, float)
so it looks at Jim’s code. If there is a definition telling it what
to do, it is happy and runs the code. If there is no definition, it
will not compile Jim’s code.

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

5

The stuff in the parentheses:
Programming languages such as C, C++, Java and Processing
provide a way to send data into a function via argument (or
argument) lists. The way this works is straightforward:

The function drawTarget() is called here:

void draw()
{ arg #1 arg #2
 drawTarget(100, 150);
 --- >
}

This is the definition of the function
drawTarget():

 arg #1 arg #2
void drawTarget(float x, float y)
{
 fill(255, 0, 0);
 ellipse(x, y, diameter*3, diameter*3);
 fill(0, 255, 0);
 ellipse(x, y, diameter*2, diameter*2);
 fill(0, 0, 255);
 ellipse(x, y, diameter, diameter);
}

The value of the first argument
shown in blue 

is copied to the first argument
shown in blue. For this call of
drawTarget(), x will be 100 when the
code is executed.

The value of the second
argument shown in green 

is copied to the second argument
shown in green. For this call of
drawTarget(), y will be 150 when the
code is executed.

This is exactly how Processing executes the functions you have
used in the first three home works. Using arguments’ and
arguments in this manner, we can draw targets anywhere in
the window by specifying different x and y values.

This is the end of the review… An now on to new stuff..

The first line of the function definition contains the function’s
“signature”. The signature of the drawTarget() function is
shown below in red:
 void drawTarget(float x, float y)

We say that the signature of the function drawTarget() is
 drawTarget(float, float)

The signature of any function is composed of:
 the name of the function
 the list of the types of the arguments (not the names, just types)

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

6

The idea of a signature is very helpful in understanding how
functions work in languages such as Processing. If you can
figure out how they work, your efforts in writing code will be
much easier. Time spent here is worthwhile to you for the next
13 weeks.

IF we return to the Processing API for the function fill(), it
shows us that there are eight different ways to call fill():

This list is actually a list of eight different definitions of the
function named fill. That’s right, eight. Programming
languages like Processing need a way to figure out which of
the eight definitions of fill to use.

The way Processing does is involves the signature of the
function call. As stated above, the signature is the name of the
function and the list of the type of the arguments in the
parentheses.

For the 8 definitions shown above, the signatures are:
fill(float)
fill(float, float)
fill(float, float, float)
fill(float, float, float, float)
fill(color)
fill(color, float)
fill(hex value)
fill(hex value, float)

If you are thinking , “why not use int?”, you can. You can
substitute an int for a float value. Processing just adds a .0 to

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

7

the int making it a float. You cannot substitute a float for an
int value. More on this very soon.

When Processing executes your code and encounters a call of
the function fill(), it determines the signature of the call.

So if we have this code:
fill(255, 17 , 43);

Processing determines that the signature is
 fill(int, int, int)
None of the 8 definitions of the fill function match this
signature but Processing knows it can substitute ints for floats so
it chooses the definition with the signature:
 fill(float, float ,float)
and follow the code in that definition.

Let’s see how this works with functions we define and call.
In the class code shown above all of the calls originally had
the same signature. Later Jim changed the calls to look like
this:
void draw()
{
 drawTarget(100, 150);
 drawTarget(200, 150, 50);
 drawTarget(300, 150, 25, 50);
}

Each call had a different signature.
 drawTarget(float, float);
 drawTarget(float, float, float);
 drawTarget(float, float, float, float);

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

8

If we look at the function definitions in the code, we see:
Signature is
drawTarget (float, float)

Signature is
drawTarget (float, float, float)

Signature is
drawTarget (float, float, float, float)

void drawTarget
 (float x, float y)
{
 fill(255, 0, 0);
 ellipse(x, y, dia*3, dia*3);
 fill(0, 255, 0);
 ellipse(x, y, **2, **2);
 fill(0, 0, 255);
 ellipse(x, y, *, *);
}

void drawTarget
 (float x, float y, float dia)
{
 fill(255, 0, 0);
 ellipse(x, y, dia*3, dia*3);
 fill(0, 255, 0);
 ellipse(x, y, dia*2, dia*2);
 fill(0, 0, 255);
 ellipse(x, y, rad, rad);
}

void drawTarget
 (float x, float y,
 float wd, float ht)
{
 fill(255, 0, 0);
 ellipse(x, y, wd*3, ht*3);
 fill(0, 255, 0);
 ellipse(x, y, wd*2, ht*2);
 fill(0, 0, 255);
 ellipse(x, y, wd, ht);
}

Processing matches the signature of the call to the signature of
the definition and follows the code inside that version of the
function.

If Processing cannot match the signature of the call with the
signature of any of the definitions, it will not compile and run
your program. Instead, it will display an error message.

Major important question and a new topic for discussion –
“How does the data get from the call?”
 drawTarget(100, 150);
to the definition?
void drawTarget (float x, float y)
{
 fill(255, 0, 0);
 ellipse(x, y, dia*3, dia*3);
 fill(0, 255, 0);
 ellipse(x, y, dia*2, dia*2);
 fill(0, 0, 255);
 ellipse(x, y, dia, dia);
}
The cheap and easy answer is, “automatically.”

But that is not fair to you and your understanding. The
detailed answer is a straightforward process.

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

9

First Processing finds the right function definition to execute
by comparing the signature of the call to the signature of the
definition.

Next it goes to the call and determines the value of the first
argument in the function call
 drawTarget(100, 150);
 -If the argument is a constant like the one above, it uses the
 constant’s value.
 - If the argument is a variable, it looks up the value.
 - If the argument is an expression, it evaluates the expression.
Processing then copies the values of the arguments in the call
into the arguments of the definition:
 void drawTarget (float x, float y)

The arguments in the definition are like variables. They have
a type (float) and a name (x). The difference is that they get
their initial values when Processing copies the values of the
arguments in the call into the arguments in the definition.

Processing copies the first argument’s value in the call into the
first argument of the definition:
The first argument in the call is the constant 100 so we see this:
The call: drawTarget(100, 150);

The definition void drawTarget (float x, float y)

Processing copies the value of second argument in the call into
the second argument of the definition and we see this:
The call:
 drawTarget(100, 150);

The definition
 void drawTarget (float x, float y)

100 150

100

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

10

This technique of copying the values in the argument list of the
call into the argument list of the definition is referred to as the
argument binding.

Two important thing to know is:
-- how Processing “knows” which function to execute
and
-- how the values get from the function call to the function
definition.

Final Thoughts:
Understanding how functions work in Processing is a major
foundation block to the remaining work You have to work
with this and until you are comfortable.

You will have to write functions in every homework starting
now.

You will have to write functions on the exams and these
functions will require arguments.

You will be shown function calls and you will have to write the
signatures of the calls.

You will be shown function definitions and will have to write
the signatures of the definitions.

You will have to draw the figures shown on the previous page
and label them.

Read the previous set of notes and these notes again and bring
your questions to class next time.

Terms with which you must to be comfortable:

• variable declaration
• variable assignment
• variable type
• system variable

Notes from the Boards Set # 6 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

11

• global variable
• function call
• function definition
• function signature
• argument
• argument binding
• function header
• function body
• return type
• void

