
10703 Deep Reinforcement Learning!

Tom Mitchell!
November 4, 2018!

Imitation Learning - 1

Recommended readings:!

Used Materials!
•  Much of the material and slides for this lecture were borrowed from

Katerina Fragkiadaki, and Ruslan Salakhutdinov!

So far in the course!
Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win the game.
•  Good: simple, cheap form of supervision
•  Bad: High sample complexity

Offroad
navigation!

Where is it successful so far?
•  In simulation, where we can afford a lot of trials, easy to parallelize
•  Not in robotic systems:

-  action execution takes long
-  we cannot afford to fail
-  safety concerns

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Reward shaping!
Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?
1. We will manually design them: “cost function design by hand remains one of the ’black

arts’ of mobile robotics, and has been applied to untold numbers of robotic systems”
2. We will learn them from demonstrations: “rather than having a human expert tune a

system to achieve desired behavior, the expert can demonstrate desired behavior and the
robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Reward shaping!
Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?
1. We will manually design them: “cost function design by hand remains one of the ’black

arts’ of mobile robotics, and has been applied to untold numbers of robotic systems”
2. We will learn them from demonstrations: “rather than having a human expert tune a

system to achieve desired behavior, the expert can demonstrate desired behavior and the
robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Learning from Demonstrations!

Learning from demonstrations a.k.a. Imitation Learning:
Supervision through an expert (teacher) that provides a set of
demonstration trajectories: sequences of states and actions.

Imitation learning is useful when it is easier for the expert to demonstrate
the desired behavior rather than:

a) coming up with a reward function that would generate such behavior,
b) coding up with the desired policy directly.

and the sample complexity is managable

Imitation Learning !
Two broad approaches :

•  Direct: Supervised training of policy (mapping states to
actions) using the demonstration trajectories as ground-
truth (a.k.a. behavior cloning)

•  Indirect: Learn the unknown reward function/goal of the
teacher, and derive the policy from these,  
a.k.a. Inverse Reinforcement Learning

 Experts can be:

•  Humans

•  Optimal or near Optimal Planners/Controllers

Outline!
Supervised	training	

•  Behavior	Cloning:	Imitation	learning	as	supervised	learning	

•  Compounding	errors	

•  Demonstration	augmentation	techniques		

•  DAGGER	

			

Inverse	reinforcement	learning	

•  Feature	matching	

•  Max	margin	planning	

•  Maximum	entropy	IRL	

Learning from Demonstration: ALVINN 1989!

“In addition, the network must not solely be shown examples of accurate driving,
but also how to recover (i.e. return to the road center) once a mistake has been
made. Partial initial training on a variety of simulated road images should help
eliminate these difficulties and facilitate better performance. “ ALVINN: An
autonomous Land vehicle in a neural Network, [Pomerleau 1989]

•  Fully connected, single hidden layer, low resolution input from camera and lidar.
•  Train to fit human-provided steering actions (i.e., supervised)
•  First (?) use of data augmentation:

Road follower!

Data Distribution Mismatch!!

4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

Data Distribution Mismatch!!

supervised learning supervised learning +
control (NAIVE)

train (x,y) ~ D! s ~ dπ*!

test (x,y) ~ D! s ~ dπ!

Supervised Learning succeeds when training and test data distributions match.
But state distribution under learned π differs from those generated by π*

Solution: Demonstration Augmentation!

Change using demonstration augmentation!

Have expert label additional examples generated by the
learned policy (e.g., drawn from)

Solution: Demonstration Augmentation!

Change using demonstration augmentation!

Have expert label additional examples generated by the
learned policy (e.g., drawn from)

How?

1.  use human expert

2.  synthetically change observed ot and corresponding ut

Demonstration Augmentation: NVIDIA 2016!

Why did that work?

Bojarski et al. ‘16, NVIDIA

Demonstration Augmentation: NVIDIA 2016!

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built
the Autonomous Land Vehicle in a Neural Network (ALVINN) system. Training
with data from only the human driver is not sufficient. The network must learn
how to recover from mistakes. …”,

End to End Learning for Self-Driving Cars , Bojarski et al. 2016

Additional, left and
right cameras with
automatic ground-
truth labels to
recover from
mistakes

Data Augmentation (2): NVIDIA 2016!

add Nvidia video!

Synthesizes new state-action pairs by rotating and translating input
image, and calculating compensating steering command

[VIDEO]

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69

Execute current policy and Query Expert
New Data

Supervised Learning

All previous data
Aggregate
Dataset

Steering
from expert

New
Policy

Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.

Test
Execu*on

Collect
Data

No‐Regret
Online Learner

Expert

Learned
Policy Done?

yes no
iπ̂

Best
Policy

iπ̂

e.g. Gradient
Descent

Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use �1 = 1 so that we do

not have to specify an initial policy ⇡̂1 before getting data from the expert’s behavior.

Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1
N

P
N

i=1 �i ! 0 as N ! 1. The simple, parameter-free version of the

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by iteratively labelling expert action for states generated by the current policy

1.  train from human data

2.  run to get dataset

3.  Ask human to label with actions

4.  Aggregate:

5.  GOTO step 1.

DAGGER !

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

Problems:
•  execute an unsafe/partially trained policy
•  repeatedly query the expert

Application on drones: given RGB from the drone camera predict
steering angles

DAGGER (in a real platform)!

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013

http://robotwhisperer.org/bird-muri/ VIDEO !

Caveats:

1.  Is hard for the expert to provide the right magnitude for the turn
without feedback of his own actions!  
Solution: provide visual feedback to expert

2.  The expert’s reaction time to the drone’s behavior is large, this
causes imperfect actions to be commanded.  
Solution: play-back in slow motion offline and record their actions.

3.  Executing an imperfect policy causes accidents, crashes into
obstacles.  
Solution: safety measures which again make the data distribution
matching imperfect between train and test, but good enough.

DAGGER (in a real platform)!

Learning monocular reactive uav control in cluttered natural environments, Ross et al. 2013

Imitation Learning !
Two broad approaches :

•  Direct: Supervised training of policy (mapping states to
actions) using the demonstration trajectories as ground-
truth (a.k.a. behavior cloning)

•  Indirect: Learn the unknown reward function/goal of the
teacher, and derive the policy from these,  
a.k.a. Inverse Reinforcement Learning

Inverse Reinforcement Learning!

Diagram: Pieter Abbeel!

Given , let’s recover R!

High4level!picture!

Dynamics
Model T

 Reward
Function R

Reinforcement!
Learning /

Optimal Control!

Controller/
Policy π�!

Prescribes action to
take for each state

Probability
distribution over next
states given current

state and action Describes desirability
of being in a state.

Inverse RL:
 Given π*and T, can we recover R?
 More generally, given execution traces, can we recover R?

Problem Setup!

•  Inverse RL

•  Can we recover R?

•  Apprenticeship learning via inverse RL

•  Can we then use this R to find a good policy?

•  Behavioral cloning (previous)

•  Can we directly learn the teacher’s policy using supervised learning?

•  Given:

•  State space, action space

•  No reward function

•  Dynamics (sometimes)

•  Teacher’s demonstration:

Assumptions (for now)!

•  Known Dynamics (transition model)
•  Reward is a linear function over fixed state features

Inverse RL with linear reward/cost function!

Jain, Hu

IRL framework

Expert

𝜋∗: 𝑥 → 𝑎

Interacts

Demonstration

𝑦∗ = 𝑥1, 𝑎1 → 𝑥2, 𝑎2 → 𝑥3, 𝑎3 → ⋯ → 𝑥𝑛, 𝑎𝑛

…… + + + + 𝑓 𝑦∗ = 𝑤𝑇 𝑤𝑇 𝑤𝑇 𝑤𝑇 𝑤𝑇

Reward Expert trajectory reward/cost!

Principle: Expert is optimal!

•  Find a reward function which explains the expert behavior

•  i.e., assume expert follows optimal policy, given her  

•  Find such that

(We assume reward is linear over features)
Let , where , and

Feature Based Reward Function!

(We assume reward is linear over features)
Let , where , and

Sub/ting into

gives us: Find such that

Feature Based Reward Function!

expected discounted sum of feature
values or feature expectations—
dependent on state visitation
distributions

Idea!

1.  Guess	an	initial	reward	function	R(s)	
2.  Learn	policy	π(s)	that	optimizes	R(s)	
3. Whenever		π(s)	chooses	action	different	from	expert	π*(s)	

•  Update	estimate	of	R(s)	to	assure		
value	of	π*(s)		>	value	of	π(s)	

4.		Go	to	2	

Feature Matching!
•  Inverse RL starting point: find a reward function such that the

expert outperforms other policies

Abbeel and Ng 2004!

Here	we	define														as	the	expected	discounted	sum	of	feature	values	
obtained	by	following	this	policy.	

Given	m	trajectories	generated	by	following	the	policy,	we	estimate	it	as	

Feature Matching!
•  Inverse RL starting point: find a reward function such that the

expert outperforms other policies

•  Observation in Abbeel and Ng, 2004: for a policy to be
guaranteed to perform as well as the expert policy , it suffices
that the feature expectations match: 

Implies that for all with

Abbeel and Ng 2004!

Why	we	wish	to	find	a	

Abbeel and Ng 2004!

Apprenticeship Learning [Abbeel & Ng, 2004]!

•  Assume for a feature map

•  Initialize: pick some policy

•  Iterate for
•  “Guess” the reward function:

Find a reward function such that the teacher maximally
outperforms all previously found policies

•  Find optimal control policy for the current guess of the reward
function

•  exit the algorithm

Abbeel and Ng 2004!

IRL in Simple Grid World (top two curves), !
Versus Three Supervised Learning Approaches!

Apprenticeship Learning [Abbeel & Ng, 2004]!

•  Assume for a feature map

•  Initialize: pick some policy

•  Iterate for
•  “Guess” the reward function:

Find a reward function such that the teacher maximally
outperforms all previously found policies

•  Find optimal control policy for the current guess of the reward
function

•  exit the algorithm

Max-margin Classifiers!

Here each point represents the!
 feature expectations for one policy.!

 !
We can label them as!

 the expert policy or not!
!
!

And use SVM maximum margin!
 algorithms to derive weights for the !

inferred reward function R!

Max-margin Classifiers!

•  We are given a training dataset of n points of the form

•  Where the are either 1 or -1, each indicating the class to which
the point belongs. Each is a p-dimensional real vector.

•  We want to find the “maximum-margin hyperplane” that divides the
group of points , for which from the group of points for
which , which is defined so that the distance between the
hyperplane and the nearest point from either group is
maximized.

•  Any hyperplane can be written as the set of points satisfying

where is the normal vector the the hyperplane

Max Margin Planning !

Maximum Margin Planning, Ratliff et al. 2006

•  Standard max margin:

Max Margin Planning !
•  Standard max margin:

•  “Structured prediction” max margin:

•  Justification: margin should be larger for policies that are
very different from

•  Example: number of states in which and
disagree

Maximum Margin Planning, Ratliff et al. 2006

Expert Suboptimality!

•  Structured prediction max margin with slack variables:

•  Can be generalized to multiple MDPs (could also be same MDP
with different initial state)

Complete Max-margin Formulation!

•  Challenge: very large number of constraints.  

•  Solution: iterative constraint generation

Maximum Margin Planning, Ratliff et al. 2006

Example: Learn Cost Function of Expert Driver!

Nathan D Ratliff, David Silver, and J Andrew Bagnell. Learning to search:!
Functional gradient techniques for imitation learning. Autonomous Robots,!

27(1):25–53, 2009b.!

Example: Learn Cost Function of Expert Driver!

LEARCH Algorithm: Iteratively learn/refine a cost/reward
function that makes expert driver appear optimal. !

Example: Learn Cost Function of Expert Driver!

Something Different!

•  Learning from Demonstration

 à

•  Learning from Instruction more
generally?

Learning	by	Demonstration	(B.	Meyers,	T.	Li)	

file:///Users/mitchell/
Documents/

My%20Documents/ppt/
LIA_tellKatie_3min.mp4!

!

Learning	From	Showing	and	Telling	

