10703 Deep Reinforcement Learning

Exploration vs. Exploitation

Tom Mitchell

October 22, 2018

Reading: Barto & Sutton, Chapter 2

Used Materials

• Some of the material and slides for this lecture were taken from Chapter 2 of Barto & Sutton textbook.

 Some slides are borrowed from Ruslan Salakhutdinov and Katerina Fragkiadaki, who in turn borrowed from Rich Sutton's RL class and David Silver's Deep RL tutorial

Exploration vs. Exploitation Dilemma

- Online decision-making involves a fundamental choice:
 - Exploitation: Take the most rewarding action given current knowledge
 - Exploration: Take an action to gather more knowledge
- The best long-term strategy may involve short-term sacrifices
- Gather enough knowledge early to make the best long term decisions

Exploration vs. Exploitation Dilemma

- Restaurant Selection
 - Exploitation: Go to your favorite restaurant
 - Exploration: Try a new restaurant
- Oil Drilling
 - Exploitation: Drill at the best known location
 - Exploration: Drill at a new location
- Game Playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

Exploration vs. Exploitation Dilemma

- Naive Exploration
 - Add noise to greedy policy (e.g. ε-greedy)
- Optimistic Initialization
 - Assume the best until proven otherwise
- Optimism in the Face of Uncertainty
 - Prefer actions with uncertain values
- Probability Matching
 - Select actions according to probability they are best
- Information State Search
 - Look-ahead search incorporating value of information

The Multi-Armed Bandit

- ► A multi-armed bandit is a tuple 〈A, R〉
- A is a known set of k actions (or "arms")
- $\mathcal{R}^{a}(r) = \mathbb{P}[r|a]$ is an unknown probability distribution over rewards, given actions
- At each step t the agent selects an action
 $a_t \in \mathcal{A}$
- For the environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- The goal is to maximize cumulative reward $\sum_{\tau=1}^{t} r_{\tau}$
- What is the best strategy?

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$ unit variance normal distribution, as suggested by these gray distributions.

Regret

> The action-value is the mean (i.e. expected) reward for action a,

$$Q(a) = \mathbb{E}\left[r|a
ight]$$

• The optimal value V* is

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

The regret is the expected opportunity loss for one step

$$I_t = \mathbb{E}\left[V^* - Q(a_t)\right]$$

The total regret is the opportunity loss summed over steps

$$L_t = \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_{ au})
ight]$$

Maximize cumulative reward = minimize total regret

Counting Regret

- The count N_t(a): the number of times that action a has been selected prior to time t
- The gap Δ_a is the difference in value between action a and optimal action a*: $\Delta_a = V^* Q(a)$
- Regret is a function of gaps and the counts

$$L_t = \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_{ au})
ight]$$

 $= \sum_{a \in \mathcal{A}} \mathbb{E}\left[N_t(a)\right](V^* - Q(a))$
 $= \sum_{a \in \mathcal{A}} \mathbb{E}\left[N_t(a)\right] \Delta_a$

- A good algorithm ensures small counts for large gaps
- Problem: rewards, and therefore gaps, are not known in advance!

- If an algorithm forever explores uniformly it will have linear total regret
- If an algorithm never explores it will have linear total regret
- Is it possible to achieve sub-linear total regret?

Greedy Algorithm

- We consider algorithms that estimate: $\hat{Q}_t(a) pprox Q(a)$
- Estimate the value of each action by Monte-Carlo evaluation:

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{i=1}^t r_i \ \mathbf{1}(a_i = a) \quad \longleftarrow \quad \begin{array}{l} \text{Sample} \\ \text{average} \end{array}$$

The greedy algorithm selects action with highest estimated value

$$a_t^* = \operatorname*{argmax}_{a \in \mathcal{A}} \hat{Q}_t(a)$$

- Greedy can lock onto a suboptimal action forever
- \Rightarrow Greedy has linear (in time) total regret

ε-Greedy Algorithm

- The ε-greedy algorithm continues to explore forever
 - With probability (1ε) select $a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \hat{Q}(a)$
 - With probability ε select a random action
- Constant ε ensures expected regret at each time step is:

$$I_t \geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \Delta_a$$

 \Rightarrow ε-greedy has linear (in time) expected total regret

ε-Greedy Algorithm

A simple bandit algorithm

 $\begin{array}{l} \mbox{Initialize, for } a=1 \mbox{ to } k: \\ Q(a) \leftarrow 0 \\ N(a) \leftarrow 0 \end{array} \\ \mbox{Repeat forever:} \\ A \leftarrow \left\{ \begin{array}{l} \arg\max_a Q(a) & \mbox{with probability } 1-\varepsilon \\ a \mbox{ random action } & \mbox{with probability } \varepsilon \end{array} \right. \\ R \leftarrow bandit(A) \\ N(A) \leftarrow N(A) + 1 \\ Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right] \end{array} \right. \\ \end{array}$

Non-Stationary Worlds

- What if reward function changes over time?
- Then we should base reward estimates on more recent experience

• Starting with
$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i$$
 just the incremental calculation of sample mean $= Q_n + \frac{1}{n} \left[R_n - Q_n \right],$

• We can up-weight influence of newer examples

$$Q_{n+1} = Q_n + \alpha \begin{bmatrix} R_n - Q_n \end{bmatrix} \quad \text{influence decays} \\ \text{exponentially in time!} \\ = (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$

Non-Stationary Worlds

We can up-weight influence of newer examples

$$Q_{n+1} = Q_n + \alpha \begin{bmatrix} R_n - Q_n \end{bmatrix} \quad \text{influence decays} \\ \text{exponentially in time!} \\ = (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$

- Can even make α vary with step n and action a
- And still assure convergence so long as

ε-Greedy Algorithm

A simple bandit algorithm

 $\alpha_n(a)$

Back to stationary worlds ···

Optimistic Initialization

- Simple and practical idea: initialize Q(a) to high value
- Update action value by incremental Monte-Carlo evaluation
- Starting with N(a) > 0

$$\hat{Q}_t(a_t) = \hat{Q}_{t-1} + \frac{1}{N_t(a_t)}(r_t - \hat{Q}_{t-1})$$

- Encourages systematic exploration early on
- But optimistic greedy can still lock onto a suboptimal action if rewards are stochastic

just an incremental estimate of sample mean, including one 'hallucinated' initial optimistic value

Figure 2.3: The effect of optimistic initial action-value estimates on the 10-armed testbed. Both methods used a constant step-size parameter, $\alpha = 0.1$.

Decaying ε_t-Greedy Algorithm

- Pick a decay schedule for $\varepsilon_1, \varepsilon_2, \dots$
- Consider the following schedule

Smallest non-zero gap How does ε change as $d = \min_{a \mid \Delta_a > 0} \Delta_i$ smallest non-zero gap shrinks? $\epsilon_t = \min \left\{ 1, \frac{c|\mathcal{A}|}{d^2 t} \right\}$

Decaying ε_t -greedy has logarithmic asymptotic total regret

c > 0

- Unfortunately, schedule requires advance knowledge of gaps
- Goal: find an algorithm with sub-linear regret for any multi-armed bandit (without knowledge of R)

Upper Confidence Bounds

- Estimate an upper confidence U_t(a) for each action value
- Such that with high probability

- This depends on the number of times N(a) has been selected
 - Small $N_t(a) \Rightarrow$ large $U_t(a)$ (estimated value is uncertain)
 - Large $N_t(a) \Rightarrow$ small $U_t(a)$ (estimated value is more accurate)
- Select action maximizing Upper Confidence Bound (UCB) $a_t = \operatorname{argmax} \hat{Q}_t(a) + \hat{U}_t(a)$

$$a_t = rgmax_{a \in \mathcal{A}} Q_t(a) + U_t(a)$$

Optimism in the Face of Uncertainty

- This depends on the number of times N(a_k) has been selected
 - Small $N_t(a_k) \Rightarrow$ upper bound will be far from sample mean
 - Large $N_t(a_k) \Rightarrow$ upper bound will be closer to sample mean

but how can we calculate upper bound if we don't know form of P(Q)?

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let $X_1, ..., X_t$ be i.i.d. random variables in [0,1], and let $\overline{X}_t = \frac{1}{\tau} \sum_{\tau=1}^t X_{\tau}$ be the sample mean. Then

$$\mathbb{P}\left[\mathbb{E}\left[X\right] > \overline{X}_t + u\right] \le e^{-2tu^2}$$

 We will apply Hoeffding's Inequality to rewards of the bandit conditioned on selecting action a

$$\mathbb{P}\left[Q(a)>\hat{Q}_t(a)+U_t(a)
ight]\leq e^{-2N_t(a)U_t(a)^2}$$

Calculating Upper Confidence Bounds

- Pick a probability p that true value exceeds UCB
- Now solve for $U_t(a)$

$$e^{-2N_t(a)U_t(a)^2} = p$$
$$U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

- Reduce p as we observe more rewards, e.g. p = t^{-c}, c=4 (note: c is a hyper-parameter that trades-off explore/exploit)
- Ensures we select optimal action as $t \to \infty$

$$U_t(a) = \sqrt{\frac{2\log t}{N_t(a)}}$$

UCB1 Algorithm

This leads to the UCB1 algorithm

$$a_t = \operatorname*{argmax}_{a \in \mathcal{A}} Q(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$$

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

$$\lim_{t \to \infty} L_t \le 8 \log t \sum_{a \mid \Delta_a > 0} \Delta_a$$

Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown, UCB generally performs better than ε -greedy action selection, except in the first k steps, when it selects randomly among the as-yet-untried actions.

Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter. Each point is the average reward obtained over 1000 steps with a particular algorithm at a particular setting of its parameter.

Bayesian Bandits

- ▶ So far we have made no assumptions about the reward distribution R
 - Except bounds on rewards
- Bayesian bandits exploit prior knowledge of rewards, $p[\mathcal{R}]$
- They compute posterior distribution of rewards $p\left[\mathcal{R} \mid h_t\right]$
 - where the history is: $h_t = a_1, r_1, ..., a_{t-1}, r_{t-1}$
- Use posterior to guide exploration
 - Upper confidence bounds (Bayesian UCB)
 - Can avoid weaker, assumption free, Hoeffding bounds
- Better performance if prior knowledge is accurate

Bayesian UCB Example

• Assume reward distribution is Gaussian, $\mathcal{R}_a(r) = \mathcal{N}(r; \mu_a, \sigma_a^2)$

• Compute Gaussian posterior over μ_a and σ_a^2 (by Bayes law)

Pick

$$p\left[\mu_{a}, \sigma_{a}^{2} \mid h_{t}\right] \propto p\left[\mu_{a}, \sigma_{a}^{2}\right] \prod_{t \mid a_{t} = a} \mathcal{N}(r_{t}; \mu_{a}, \sigma_{a}^{2})$$

action $a_{t} = \operatorname{argmax} \mu_{a} + c\sigma_{a}/\sqrt{N(a)}$

Probability Matching

 Probability matching selects action a according to probability that a is the optimal action

$$\pi(a \mid h_t) = \mathbb{P}\left[Q(a) > Q(a'), \forall a' \neq a \mid h_t\right]$$

- Probability matching is naturally optimistic in the face of uncertainty
 - Uncertain actions have higher probability of being max
- Can be difficult to compute analytically.

Thompson Sampling

Thompson sampling implements probability matching

$$\pi(a \mid h_t) = \mathbb{P}\left[Q(a) > Q(a'), \forall a' \neq a \mid h_t
ight] \ = \mathbb{E}_{\mathcal{R}\mid h_t}\left[\mathbf{1}(a = \operatorname*{argmax}_{a \in \mathcal{A}} Q(a))
ight]$$

- here R is the actual (unknown) distribution from which rewards are drawn
- Use Bayes law to compute posterior distribution : $p[\mathcal{R} \mid h_t]$ (i.e., distribution over the parameters of \mathcal{R})
- Sample a reward distribution R from posterior
- Compute action-value function: $Q(a) = \mathbb{E}[\mathcal{R}_a]$
- Select action maximizing value on sample: $a_t = \underset{a \in A}{\operatorname{argmax}} Q(a)$

Contextual Bandits (aka Associative Search)

- A contextual bandit is a tuple $\langle A, S, R \rangle$
- A is a known set of k actions (or "arms")
- $S = \mathbb{P}[s]$ is an unknown distribution over states (or "contexts")
- $\mathcal{R}^{a}_{s}(r) = \mathbb{P}[r|s, a]$ is an unknown probability distribution over rewards
- At each time t
 - Environment generates state $s_t \sim \mathcal{S}$
 - Agent selects action $a_t \in \mathcal{A}$
 - Environment generates reward $r_t \sim \mathcal{R}_{s_t}^{a_t}$
- The goal is to maximize cumulative reward $\sum_{\tau=1}^{t} r_{\tau}$

Value of Information

- Exploration is useful because it gains information
- Can we quantify the value of information?
 - How much reward a decision-maker would be prepared to pay in order to have that information, prior to making a decision
 - Long-term reward after getting information vs. immediate reward
- Information gain is higher in uncertain situations
- Therefore it makes sense to explore uncertain situations more
- If we know value of information, we can trade-off exploration and exploitation optimally

Information State Search in MDPs

- MDPs can be augmented to include information state
- Now the augmented state is $\tilde{S} = \langle s, s \sim \rangle$
 - where s is original state within MDP
 - and s~ is a statistic of the history (accumulated information)
- Each action a causes a transition
 - to a new state s' with probability $\mathcal{P}^{a}_{s,s'}$
 - to a new information state s~' $\tilde{\mathcal{P}}^{a}_{\tilde{s},\tilde{s}'}$
- Defines MDP in augmented information state space

$$\tilde{\mathcal{M}} = \langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{\mathcal{P}}, \mathcal{R}, \gamma \rangle$$

Conclusion

- Have covered several principles for exploration/exploitation
 - Naive methods such as ε-greedy
 - Optimistic initialization
 - Upper confidence bounds
 - Probability matching
 - Information State Search
- These principles were developed in bandit setting
- But same principles also apply to MDP setting

Thank you