10703 Deep Reinforcement Learning

Tom Mitchell

Machine Learning Department

September 12, 2018

Monte Carlo Methods

Used Materials

• Acknowledgement: Much of the material and slides for this lecture were borrowed from Ruslan Salakhutdinov, who in turn borrowed much from Rich Sutton's class and David Silver's class on Reinforcement Learning.

Monte Carlo (MC) Methods

- Monte Carlo methods are learning methods
 - Experience \rightarrow values, policy
- Monte Carlo uses the simplest possible idea: value = mean return
- Monte Carlo methods can be used in two ways:
 - Model-free: No model necessary and still attains optimality
 - Simulated: Needs only a simulation, not a full model
- Monte Carlo methods learn from complete sample returns
 - Only defined for episodic tasks (this class)
 - All episodes must terminate (no bootstrapping)

Monte-Carlo Policy Evaluation

• Goal: learn $v_{\pi}(s)$ from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

• Remember that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

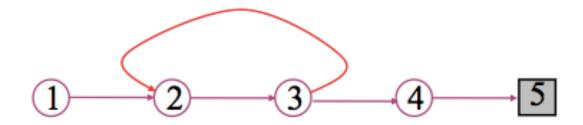
Remember that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[\mathit{G}_{t} \mid \mathit{S}_{t} = s
ight]$$

 Monte-Carlo policy evaluation uses the empirical mean return instead of the model-provided expected return

Monte-Carlo Policy Evaluation

- Goal: learn $v_{\pi}(s)$ from episodes of experience under policy π
- Idea: Average returns observed after visits to s:



- Every-Visit MC: average returns for every time s is visited in an episode
- First-visit MC: average returns only for first time s is visited in an episode
- Both converge asymptotically. But First-visit easier to think about

First-Visit MC Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in an episode,
- Increment counter: $N(s) \leftarrow N(s) + 1$
- Increment total return: $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers $V(s) o v_\pi(s)$ as $N(s) o \infty$

Every-Visit MC Policy Evaluation

- To evaluate state s
- Every time-step t that state s is visited in an episode,
- Increment counter: $N(s) \leftarrow N(s) + 1$
- Increment total return: $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers $V(s) o v_\pi(s)$ as $N(s) o \infty$

Blackjack Example

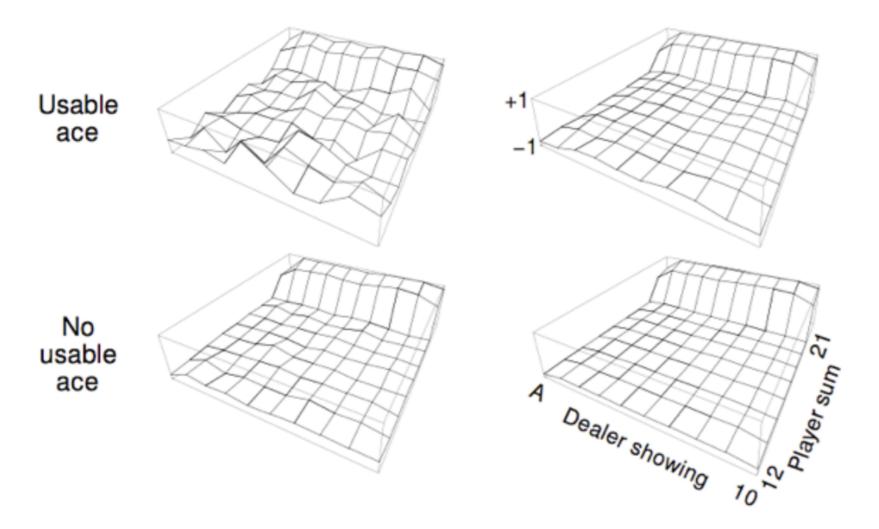
- Objective: Have your card sum be greater than the dealer's without exceeding 21.
- States (200 of them):
 - current sum (12-21)
 - dealer's showing card (ace-10)
 - do I have a useable ace?

- Reward: +1 for winning, 0 for a draw, -1 for losing
- Actions: stick (stop receiving cards), hit (receive another card)
- One Policy: Stick if my sum is 20 or 21, else hit
- No discounting (γ =1)

Learned Blackjack State-Value Functions

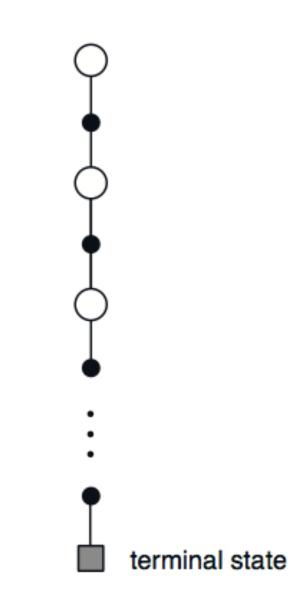
After 10,000 episodes

After 500,000 episodes



Backup Diagram for Monte Carlo

- Entire rest of episode included
- Only one choice considered at each state (unlike DP)
 - thus, there will be an explore/exploit dilemma
- Does not bootstrap from successor state's values (unlike DP)
- Value is estimated by mean return



Incremental Mean

• The mean μ_1 , μ_2 , ... of a sequence x_1 , x_2 , ... can be computed incrementally:

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$
$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$
$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} \right)$$
$$= \mu_{k-1} + \frac{1}{k} \left(x_{k} - \mu_{k-1} \right)$$

Incremental Monte Carlo Updates

- Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$
- For each state S_t with return G_t

$$egin{aligned} &\mathcal{N}(S_t) \leftarrow \mathcal{N}(S_t) + 1 \ &\mathcal{V}(S_t) \leftarrow \mathcal{V}(S_t) + rac{1}{\mathcal{N}(S_t)} \left(G_t - \mathcal{V}(S_t)
ight) \end{aligned}$$

 In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

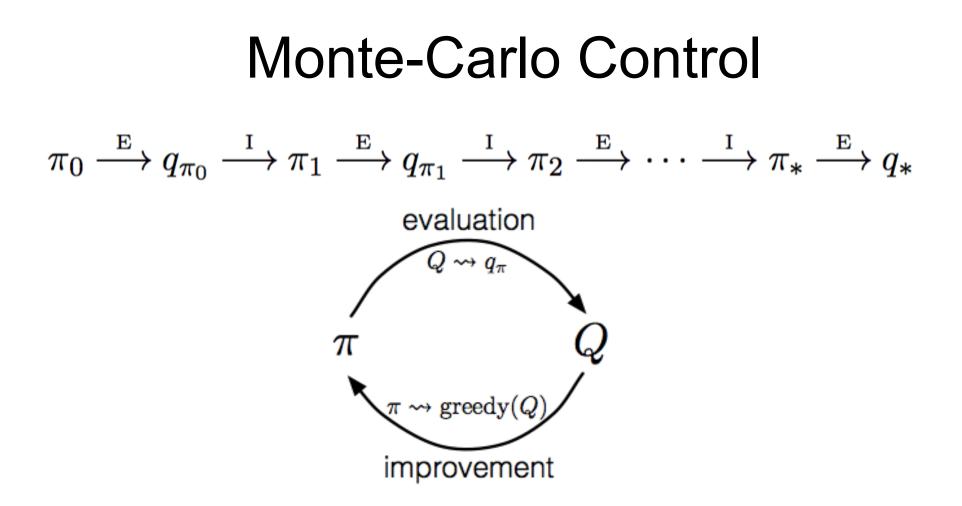
$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

MC Estimation of Action Values (Q)

- Monte Carlo (MC) is most useful when a model is not available
 - We want to learn q*(s,a)
- $q_{\pi}(s,a)$ average return starting from state s and action a following π

$$egin{aligned} q_{\pi}(s,a) &= & \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t \!=\! s, A_t \!=\! a] \ &= & \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s')\Big]. \end{aligned}$$

- Converges asymptotically if every state-action pair is visited
- Exploring starts: Every state-action pair has a non-zero probability of being the starting pair



- MC policy iteration step: Policy evaluation using MC methods followed by policy improvement
- Policy improvement step: greedify with respect to value (or actionvalue) function

Greedy Policy

- For any action-value function q, the corresponding greedy policy is the one that:
 - For each s, deterministically chooses an action with maximal action-value:

$$\pi(s) \doteq \arg\max_{a} q(s, a).$$

• Policy improvement then can be done by constructing each π_{k+1} as the greedy policy with respect to $q_{\pi k}$.

Convergence of MC Control

Greedified policy meets the conditions for policy improvement:

$$egin{array}{rl} q_{\pi_k}(s,\pi_{k+1}(s)) &=& q_{\pi_k}(s,rgmax_a q_{\pi_k}(s,a)) \ &=& \max_a q_{\pi_k}(s,a) \ &\geq& q_{\pi_k}(s,\pi_k(s)) \ &\geq& v_{\pi_k}(s). \end{array}$$

- And thus must be $\geq \pi_{k.}$
- This assumes exploring starts and infinite number of episodes for MC policy evaluation

Monte Carlo Exploring Starts

```
Initialize, for all s \in S, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

\pi(s) \leftarrow \text{arbitrary}

Returns(s, a) \leftarrow \text{empty list}
```

Fixed point is optimal policy π^*

Repeat forever:

Choose $S_0 \in S$ and $A_0 \in \mathcal{A}(S_0)$ s.t. all pairs have probability > 0 Generate an episode starting from S_0, A_0 , following π For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a)

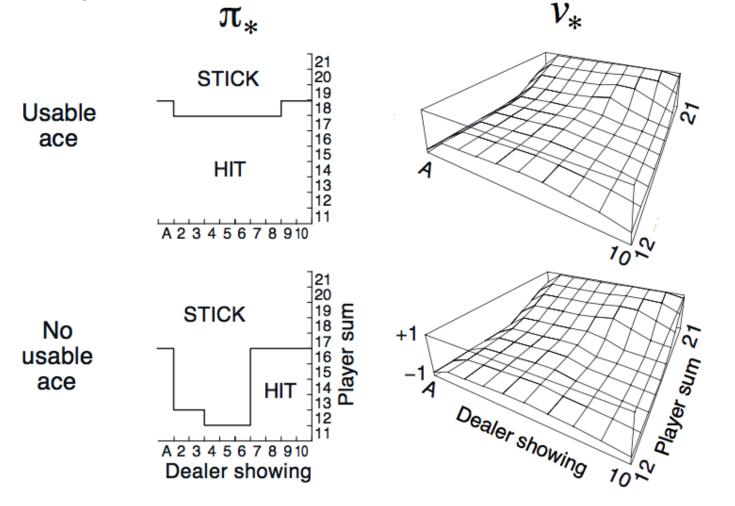
 $Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))$

For each s in the episode:

 $\pi(s) \leftarrow \operatorname{arg\,max}_a Q(s, a)$

Blackjack example continued

With exploring starts



On-policy Monte Carlo Control

- On-policy: learn about policy currently executing
- How do we get rid of exploring starts?
 - The policy must be eternally soft: $\pi(a|s) > 0$ for all s and a.
- For example, for ϵ -soft policy, probability of an action, $\pi(a|s)$,

$$\pi(a|s) = \frac{\epsilon}{|\mathcal{A}(s)|} \text{ or } 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|}$$

non-max max (greedy)

- Similar to GPI: move policy towards greedy policy
- Converges to the best ε-soft policy.

On-policy Monte Carlo Control

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $Returns(s,a) \leftarrow \text{empty list}$ $\pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$

Repeat forever:

(a) Generate an episode using π (b) For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow$ average(Returns(s, a)) (c) For each s in the episode: $A^* \leftarrow$ arg max_a Q(s, a)For all $a \in \mathcal{A}(s)$: $\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}$

Summary so far

- MC has several advantages over DP:
 - Can learn directly from interaction with environment
 - No need for full models
 - No need to learn about ALL states (no bootstrapping)
 - Less harmed by violating Markov property (later in class)
- MC methods provide an alternate policy evaluation process
- Critical to calculate q(s,a) instead of v(s)! (why?)
- One issue to watch for: maintaining sufficient exploration:
 - exploring starts, soft policies

Off-policy methods

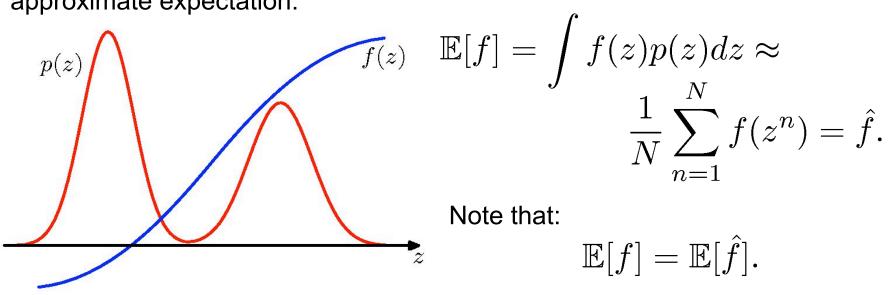
- Learn the value of the target policy π from experience due to behavior policy μ .
- For example, π is the greedy policy (and ultimately the optimal policy) while µ is exploratory (e.g., ε-soft) policy
- In general, we only require coverage, i.e., that μ generates behavior that covers, or includes, π

 $\pi(a|s) > 0$ for every *s*,*a* at which $\mu(a|s) > 0$

- Idea: Importance Sampling:
 - Weight each return by the ratio of the probabilities of the trajectory under the two policies.

Simple Monte Carlo

• General Idea: Draw independent samples $\{z^1,..,z^n\}$ from distribution p(z) to approximate expectation:



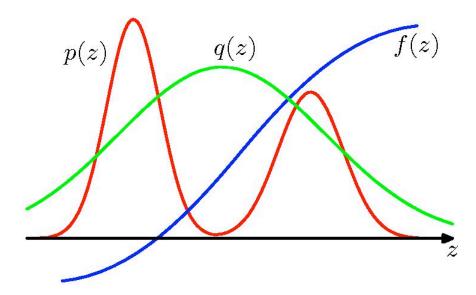
so the estimator has correct mean (unbiased).

- The variance: $\operatorname{var}[\hat{f}] = \frac{1}{N} \mathbb{E}[(\hat{f} \mathbb{E}[\hat{f}])^2]$
- Variance decreases as 1/N.
- **Remark**: The accuracy of the estimator does not depend on dimensionality of z.

Ordinary Importance Sampling

• Suppose we have an easy-to-sample proposal distribution q(z), such that

$$q(z) > 0$$
 if $p(z) > 0$. $\mathbb{E}[f] = \int f(z)p(z)dz$



$$= \int f(z) \frac{p(z)}{q(z)} q(z) dz$$
$$\approx \frac{1}{N} \sum_{n} \frac{p(z^{n})}{q(z^{n})} f(z^{n}), \ z^{n} \sim q(z).$$

• The quantities $w^n = p(z^n)/q(z^n)$

are known as importance weights.

Weighted Importance Sampling

• Let our proposal be of the form: $q(z) = ilde{q}(z)/\mathcal{Z}_q.$

$$\begin{split} \mathbb{E}[f] &= \int f(z)p(z)dz \quad = \int f(z)\frac{p(z)}{q(z)}q(z)dz = \frac{Z_q}{Z_p}\int f(z)\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz \\ &\approx \frac{Z_q}{Z_p}\frac{1}{N}\sum_n \frac{\tilde{p}(z^n)}{\tilde{q}(z^n)}f(z^n) = \frac{Z_q}{Z_p}\frac{1}{N}\sum_n w^n f(z^n), \end{split}$$

• But we can use the same weights to approximate $\,\mathcal{Z}_q/\mathcal{Z}_p:\,$

$$\frac{\mathcal{Z}_p}{\mathcal{Z}_q} = \frac{1}{\mathcal{Z}_q} \int \tilde{p}(z) dz = \int \frac{\tilde{p}(z)}{\tilde{q}(z)} q(z) dz \approx \frac{1}{N} \sum_n \frac{\tilde{p}(z^n)}{\tilde{q}^n(z)} = \frac{1}{N} \sum_n w^n$$

• Hence:

$$\mathbb{E}[f] \approx \sum_{n=1}^{N} \frac{w^n}{\sum_{m=1}^{N} w^m} f(z^n), \quad z^n \sim q(z).$$

Importance Sampling Ratio

• Probability of the rest of the trajectory, after S_t , under policy π

$$\begin{aligned} \Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\} \\ &= \pi(A_t | S_t) p(S_{t+1} | S_t, A_t) \pi(A_{t+1} | S_{t+1}) \cdots p(S_T | S_{T-1}, A_{T-1}) \\ &= \prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k), \end{aligned}$$

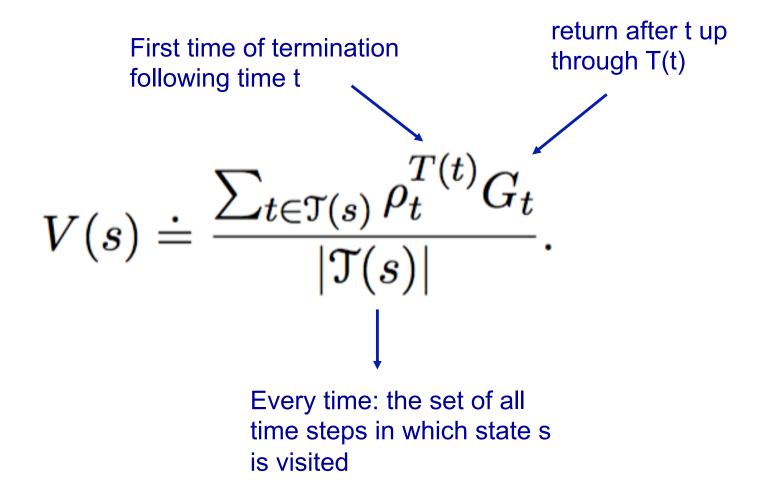
 Importance Sampling: Each return is weighted by the relative probability of the trajectory under the target and behavior policies

$$\rho_t^T = \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k|S_k) p(S_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}$$

This is called the Importance Sampling Ratio

Importance Sampling

Ordinary importance sampling forms estimate



Importance Sampling

Ordinary importance sampling forms estimate

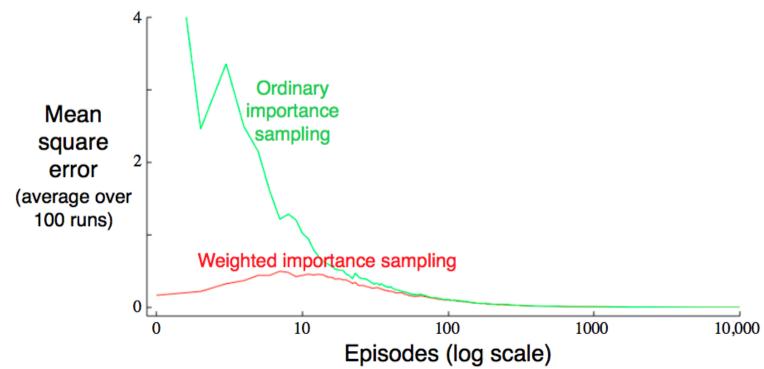
$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_t^{T(t)} G_t}{|\mathfrak{T}(s)|}.$$

• Weighted importance sampling forms estimate:

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_t^{T(t)} G_t}{\sum_{t \in \mathfrak{T}(s)} \rho_t^{T(t)}}$$

Example: Off-policy Estimation of the Value of a Single Blackjack State

- State is player-sum 13, dealer-showing 2, useable ace
- Target policy is stick only on 20 or 21
- Behavior policy is equiprobable
- ► True value ≈ -0.27726



Incremental off-policy every-visit MC policy evaluation (returns $Q \approx q_{\pi}$

Input: an arbitrary target policy π

```
Initialize, for all s \in S, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

C(s, a) \leftarrow 0
```

 $\begin{array}{l} \text{Repeat forever:} \\ \mu \leftarrow \text{any policy with coverage of } \pi \\ \text{Generate an episode using } \mu \text{:} \\ S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T, S_T \\ G \leftarrow 0 \\ W \leftarrow 1 \\ \text{For } t = T - 1, T - 2, \dots \text{ downto } 0 \text{:} \\ G \leftarrow \gamma G + R_{t+1} \\ C(S_t, A_t) \leftarrow C(S_t, A_t) + W \\ Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} \left[G - Q(S_t, A_t) \right] \\ W \leftarrow W \frac{\pi(A_t | S_t)}{\mu(A_t | S_t)} \\ \text{If } W = 0 \text{ then ExitForLoop} \end{array}$

Off-policy every-visit MC control (returns $\pi \approx \pi_*$)

```
Initialize, for all s \in S, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

C(s, a) \leftarrow 0

\pi(s) \leftarrow \operatorname{argmax}_{a} Q(S_{t}, a) (with ties broken consistently)
```

```
Repeat forever:
     \mu \leftarrow \text{any soft policy}
                                                                                      Target policy is greedy
     Generate an episode using \mu:
                                                                                      and deterministic
           S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T, S_T
     G \leftarrow 0
                                                                                      Behavior policy is soft,
     W \leftarrow 1
                                                                                      typically \varepsilon-greedy
     For t = T - 1, T - 2, ... downto 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          \pi(S_t) \leftarrow \operatorname{argmax}_a Q(S_t, a) (with ties broken consistently)
          If A_t \neq \pi(S_t) then ExitForLoop
          W \leftarrow W \frac{1}{\mu(A_t|S_t)}
```

Summary

- MC has several advantages over DP:
 - Can learn directly from interaction with environment
 - No need for full models
 - Less harmed by violating Markov property (later in class)
- MC methods provide an alternate policy evaluation process
- One issue to watch for: maintaining sufficient exploration
 - Can learn directly from interaction with environment
- Looked at distinction between on-policy and off-policy methods
- Looked at importance sampling for off-policy learning
- Looked at distinction between ordinary and weighted IS