09-723 Proximal Probe Techniques Harmonic Oscillator Summary

Linear Harmonic oscillator
Mechanical model: mass m on a spring characterized by a spring constant k

Elastic restoring force F, = —kx is balanced according to Newton's second law

F s — mMa €—ycceleration

X+, x=0

where

W, = \/E free natural angular frequency
m

We will show that such system oscillates with amplitude 4 and angular frequency @, .

Basic facts about second order linear differential equations:

1. Solutions x=x(t;C,,C,) will have two constants dependent on initial conditions
2. 1If x,(¢) 1s a solution then Ckx,(¢) is also a solution.

3. If x,(¢) and x,(¢) are solutions then x,(¢)+ x,(¢)as well as any linear combination
C,x,(¢)+ C,x,(¢) 1s also a solution.

To solve the equation of motion
. 2
X+w, x=0
we multiply both sides by 2x
2565 = -2, xx
which allows us to immediately carry out the first integration:

. 2
W =—w, x*+C
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We determine the first integration constant C by observing that at a full "swing", the
oscillator position is equal to its amplitude, x=A4, and its velocity is zero (turning point of

oscillation) x =0. Thus C = a)OZA2 and the equation to be integrated further becomes:
=) (4 -x7)

Separation of variables gives

J\/T—wojdt

and after integration:

sin”’ (%j =wt+¢

or in a more familiar form:
x = Asin(wyt + @)
@, 1s the natural angular frequency.

w, =2r f, , where f is the natural frequency.

Oscillation period 7, = L .
0

Alternative solution method uses trial exponential function

x =exp(At), and our task is to determine the constant A .
Substituting into the equation to be solved we obtain

A exp(At) + @, exp(At) =0

from which it is immediately clear that

A =-w

and thus

A=+iw, where i=+-1
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Thus the general solution has to be of the form
x = A exp(+imyt) + A, exp(—iw,t)

(remember: we need fwo constants).

Recall Euler's formula

e’ =cos@ *isinf

Since A4; and 4, are complex quantities, they may be inconvenient to use, and it is more
informative to write the solution as:

x= Aexp[i(a)ot + ¢)]
= Acos(@yl + @) +idsin(@yt + @)

Energy considerations

Consider solution

x = Asin(wyt + @)

The velocity v is equal to
X = Aw, cos(w,t + @)

and thus the kinetic energy

K = %mx2 — %mAszZ COSz(th +¢) = KO COSz(a)Ot +¢)

where the maximum kinetic energy is equal to
K, = lmAzaoo2 _ L
2 2
The potential energy — work done by applied force displacing the system from 0 to x

¥ 1
U(x) = |kx dx =—kx*
(x) I o=

Substituting x
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U(x) = %kA2 sin’(wyt + @) = U, sin’ (@t + @)

where U) is the maximum potential energy (for x=A4)

U, = e
2

The average values over one oscillation period are calculated using the definition

! j f(0)at
t,—t

ltl

()=
Thus:

T T
j Udt jUO sin’ (@, + @) |
: =—U, =—kA’
2

:0T =
Idt T 2
0

(v)

ey
<K>—2K0 Sk’

In conclusion, the average values of kinetic and potential energy per oscillation cycle are
equal to

()= (K)=(E)

Damped harmonic oscillator
This time, we introduce the additional force, which will dissipate the energy.

F,=—-bv=-bx

The equation of motion gains one more term:



09-723 Proximal Probe Techniques Harmonic Oscillator Summary

mx+bx+kx=0

Denote:
yo b gk
om0 m

X4+ 2y5+@, x=0
Use exponential trial function
x=exp(At) x=Adexp(Ar) i=Aexp(Ar)

exp(A)[A* + 274+ w,"1=0
since

exp(At) #0
A 42 +w, =0

h=—y+{V +o,’
4 :_7_\/72 "'a)o2

x(1) = A exp(A1) + 4, exp(A,1)

x(t) = exp(=yO)[ 4 exp(+1y] 7’ — @, ) + 4 exp(—1y]1* — @,)]

Depending on the sign of the expression under the root, there are three
possible cases:

Underdamped

Y —w, <0 A and A, are imaginary: oscillating solutions.
Overdamped

Y -, >0 A and 4, are both real

Critically damped

Y= woz

Underdamped oscillator
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x(t) =exp(=yt)[ 4, exp(iwt) + A, exp(iwt)]

which recalling Euler's formula becomes

x(t) =exp(=yt) [i(4, — 4,)sin(wt) + (4, + A,) cos(wt)]
Substitute

i(4—4,)=B and 4 +4,=C

x(t) = exp(=yt) [Bsin(@,t) + Ccos(wt)]

Introduce

A=+B>+C* and tan(¢) = —%

x(t) = Aexp(=yt) cos(wt + @)

Damped oscillator moves at "frequency" smaller than undamped:

2
o =+, -7 =0, 1—%
0

For small damping y expand in binomial series and retain only the first two terms
7/2 ) 2
0 0
and for small damping ¥ < @w,and @, = o,

o, = w,(1-

Critically damped
A=k=-y
Solution

x(1) = (4 + 4,) exp(=yt) = (B,) exp(=71)

This is not a general solution (it contains just one constant).
We can show that if

x(t) =exp(—yt) than x(¢)=texp(—y¢) is also a solution.
Substitute
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X(1) = exp(=yt) — ytexp(=yt) = (1 - yt) exp(=y1)

X(t) = (1= yO)(=y)exp(=yt) — yexp(=yt) = (y’t = 2y) exp(~yt)
[Vt =2y +2y(1 - yt) + ,’t]exp(~yt) = 0

[(w, —y")tlexp(—yt) =0 Always satisfied.

Thus the general solution for a critically damped oscillator is:

x(1) = (B, + B,t) exp(~71)
Overdamped

2
VY —w, <o,

x(2) = exp(=yt)[ 4, exp(@,t) + 4, exp(—a,1)]
Energy considerations

Total energy:

E(1)=EQ0)+W,

k

work performed by friction

Frictional force:
f=-bx=-bv

W, = j fdx :] f%dr :] fodt = ]—bvzdt
0 0 0 0

The rate of energy loss:

dw
dE_ Wy,
dt dt

1, 1.,
E@)=K@O+U(0) = mi’ +_kx

recall that
x(t) = Aexp(—yt) cos(wt + @)

() = —, Aexp(=y0)[ sin(oit +§) + wlcos(a)lt +0)]

1

Assume that the system is lightly damped (l < 1), so we can neglect the second term.
a)l

Then:
E(t)= %Az exp(=2yt)[m w,sin’* (ot + @) + k cos’ (vt + ¢)]
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Since light damping was assumed, a)l2 ~ a)o2 = * and E(?) becomes
m

Em:%M%wGMO

The initial energy

Q:lmz
2
and thus

E(t)=E,exp(-2yt)
(notice that the energy decays twice as fast as amplitude!)

The characteristic decay time (£ decreases to E/e)

Lo~ Eyexp(-2y7)

Quality factor

0=2r energy stored in the oscillator

energy dissipated in one time period

Define P = power loss = rate of energy dissipation

. . . 27
since one time period 7, = —

1
the denominator can be written as
2
PT,=P—
a)l

Thus

E

0=2r
pAF

o

: 1 : : I
Since — - time necessary to complete 1 radian of oscillation, we can redefine Q as
a)l

energy stored in the oscillator

- average energy dissipated per radian



09-723 Proximal Probe Techniques Harmonic Oscillator Summary

For a lightly damped oscillator O can be calculated as follows:

E(t)=E,exp(-2yt)
dE

— =-29F

dt 4

Thus the energy dissipated in time Af will be equal to

AE =|%E| ps = 2yEAt
dT
1 : .
If we choose Af=— (time necessary to complete 1 radian)
a)l
E E o

Q:E:27/E/a)l _27/

For light damping o, = @, and thus
a)O

°=

Forced (driven) damped harmonic oscillator

Net force

F

net

=F+F +F,

restoring dissipative driving
elastic force friction force  force

where: F, =—kx;F, =-bx
F;'let

mx +bx +kx = F,
assume harmonic driving force

=mx

F, = F,cos(wt+6,)

mX + bx + kx = F, cos(wt + 6,)

This is an inhomogeneous 2-nd order linear differential equation. Its solution is the sum
of two parts, according to the following theorem:

If X; is a particular solution of an inhomogeneous differential equation, and

X, 1s a solution of a complementary homogeneous equation, then
X()=Xi() +X(1)

is a general solution.
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From our previous considerations, the solution of the complementary homogeneous
equation is given by one of the three equivalent forms:

x, (1) =exp(=yt) [4 exp(+iwt) + 4, exp(—iwt)]
x,(t) =exp(=yt) [Bsin(wt) + C cos(w?)]
x,(t) = A, exp(—yt) cos(wyt + @,)

For an inhomogeneous equation, let's postulate the following particular solution
x,(t)= Acos(wt £ ¢)
and focus on the — sign solution.

x,(t)= Acos(wt—¢)

X,(t) = —Aw sin(wt — @)
¥.(t) =—Aw’ cos(wt — @)
Upon substitution
—mAw” cos(wt — @) — bAw sin(wt — @) + kA cos(wt — @) = F, cos(wr)

(for simplicity we assumed that 6, =0).

Recall that:

cos(wt — @) = coswt cos @ + sin wt sin ¢
sin(wt — @) = sin Wt cos ¢ — cos wt sin @

thus
—mAw’® [cos wt cos @ + sin wt sin @]

—bAw [sin @t cos @ —cos i sin @]
+kA[coswtcos@ +sinwtsing| =
= F, cos(wt)

This can be regrouped as

cos wt[—-mAw” cos ¢ +bAw sin @ + kA cos @]
—sin wt[-mAw’ sin d — bAw cos @ + kA sin @]
= F, cos(wt) + 0 sin(wt)

Since the cos(wr) and sin(wt) coefficients on both sides of the equation have to be equal,
we obtain the system of two equations:

10
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(k —mw*)cos¢ + bw sin @ :%

(k—mw*)sing —bw cos¢ =0

From the above it follows that:

»%
tan¢:sm¢: ba T= m__ _ 37@ -
cos¢p k—-mw K _pp @ -
m
thus
sing = - 270
\/(a)o -0’) +47°0’
w,’ - o’
cosgp = .

\/(a)o2 -0’) +4y°w’

Substistute these back to obtain
F,/m

\/(a)02 -’ )2 +47°w’

A=

Thus a particular solution of the inhomogeneous equation is:

x(f)= h/ ’2" cos(wt — @)
\/(a)o2 —a)z) + 470
where
¢ =tan"' —3760 >
' —w

The general solution is:

x(£) = x, () +x,() = 4, exp(—yt) cos(@t + @, ) + Fy/m

/ \/(a)o2 — o’ )2 +47° 0’

transient term T

cos(wt — @)

steady state term

11
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Amplitude resonance

The amplitude of the particular solution reaches maximum when the driving force is
equal to

w=0 =\, -2y
On resonance, the phase shift
b4
=5
Far below resonance
oo, 90

Far above resonance
0o>a0, 0>

Energy resonance

x(t) = A cos(wt — @)
v=x(t) =—wAsin(wt — @)

1 2 _ l 2 42 2 _
K(t)—zmv = 2ma) A” sin“(wt — @)

U(t) = %kx2 = %kA2 cos’(wt — @)

E()=K()+U(t) = %Az [m@’ sin’(wt — @)+ k cos’ (wt — P)]

Recall that per period:
1
cos’(wt —@)) = (sin’(wt — @) = —
(cos’ (@1 -9)) = (sin’(@x -9)) =
Substitute 4 (w) to K(2)
2, 2
K(1) :lma)2 £y /2m sin’(wt — @)
2 (a)o2 —a)z) +47’ 0’
1 F’ W’
K@)=—-"
< ( )> 4 m

2
(a)o2 — a)2) +47° 0’
Kinetic energy resonance:

d (K(1))
do

=0 for w=w,

12
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Potential energy resonance
since U(t) = %kx2 , occurs at the same frequency as amplitude resonance @ = J(z)o2 -2y
Total energy resonance. Resonance peak width and Q

_ 1 2 2 ) 1 2 2
(E(0)= Ao (sin’ (et - 9)) oA k(cos’ (ot - ¢))

and after substituting 4

(E)= 1 F’ o’ +w,

4 m (woz_wz)2+472w2

For very weak damping y <« @,
o+, =2w,

0’ -0, =(0-0,) 0+, =20,(0—w,)

1 F} 1

E -~ -

< (a))> 8 m (a)o_w)2+72
?

Lorentzian

Maximum at @ = @,

1F° 1
E =_20 -
< (a)0)> 8 m 7/2

The energy is equal 2 of its value at
(00— a)o)2 = 72

or w—a@,=xy

Resonance peak width at half height

Aw=2y
Recall from previous considerations that
_o
0 2y
This is the basis for determining Q from the energy resonance peak width:

0=

Ao
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