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Linear Harmonic oscillator 
 
Mechanical model: mass m on a spring characterized by a spring constant k  
 
Elastic restoring force sF kx= −  is balanced according to Newton's second law 
 

sF ma=  
 
mx kx= −��  
 

0mx kx+ =��  
 

2
0 0x xω+ =��  

 
where 

0
k
m

ω =  

 
We will show that such system oscillates with amplitude A and angular frequency 0ω . 
 
 
 
 
 
 
 
 
 
 
 
To solve the equation of motion 
 

2
0 0x xω+ =��  

 
we multiply both sides by 2x�  
 

2
02 2xx xxω= −��� �  

 
which allows us to immediately carry out the first integration: 
 

22 2
0x x Cω= − +�  

 

acceleration 

free natural angular frequency 

Basic facts about second order linear differential equations: 
 

1. Solutions  1 2( ; , )x x t C C=   will have two constants dependent on initial conditions 
2. If 1( )x t  is a solution then 1( )Cx t is also a solution. 
3. If 1( )x t  and 2( )x t  are solutions then  1 2( ) ( )x t x t+ as well as any linear combination 

1 1 2 2( ) ( )C x t C x t+ is also a solution. 
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We determine the first integration constant C by observing that at a full "swing", the 
oscillator position is equal to its amplitude, x=A, and its velocity is zero (turning point of 
oscillation) 0x =� .  Thus 2 2

0C Aω= and the equation to be integrated further becomes: 
 

22 2 2
0 ( )x A xω= −�  

 
Separation of variables gives 
 

02 2

dx dt
A x

ω=
−∫ ∫  

 
and after integration: 
 

1
0sin x t

A
ω φ−   = + 

 
 

 
or in a more familiar form: 
 

0sin( )x A tω φ= +  
 

0ω is the natural angular frequency. 
 

0 02 fω π= , where f0 is the natural frequency. 
 

Oscillation period 0
0

1T
f

= . 

 
Alternative solution method uses trial exponential function 
 

exp( )x tλ= , and our task is to determine the constant  λ . 
 
Substituting into the equation to be solved we obtain 
 

22
0exp( ) exp( ) 0t tλ λ ω λ+ =  

 
from which it is immediately clear that  
 

22
0λ ω= −  

 
and thus  
 

0iλ ω= ±   where  1i = −  
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Thus the general solution has to be of the form 
 

1 0 2 0exp( ) exp( )x A i t A i tω ω= + + −  
 
(remember: we need two constants). 
 
Recall Euler's formula 
 

cos sinie iθ θ θ± = ±  
 
Since A1 and A2 are complex quantities, they may be inconvenient to use, and it is more 
informative to write the solution as: 
 

0

0 0

exp[ ( )]
cos( ) sin( )

x A i t
A t iA t

ω φ
ω φ ω φ

= +
= + + +

 

 
Energy considerations 
 
Consider solution 
 

0sin( )x A tω φ= +  
 
The velocity v is equal to 
 

0 0cos( )x A tω ω φ= +�  
 
and thus the kinetic energy 
 

22 2 2 2
0 0 0 0

1 1 cos ( ) cos ( )
2 2

K mx mA t K tω ω φ ω φ= = + = +�  

where the maximum kinetic energy is equal to 
 

22 2
0 0

1 1
2 2

K mA kAω= =  

 
The potential energy – work done by applied force displacing the system from 0 to x 
 

2

0

1( )
2

x

U x kx dx kx= =∫  

 
Substituting x 
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2 2 2
0 0 0

1( ) sin ( ) sin ( )
2

U x kA t U tω φ ω φ= + = +  

 
where U0 is the maximum potential energy (for x=A) 
 

2
0

1
2

U kA=  

 
The average values over one oscillation period are calculated using the definition 
 
 

2

12 1

1 ( )
t

t

f f t dt
t t

=
− ∫  

 
 
Thus: 
 
 

2
0 0

20 0
0

0

sin ( )
1 1
2 2

T T

T

Udt U t
U U kA

T
dt

ω φ+
= = = =
∫ ∫

∫
 

 
and  
 

2
0

1 1
2 2

K K kA= = . 

 
In conclusion, the average values of kinetic and potential energy per oscillation cycle are 
equal to  
 

1
2

U K E= =  

 
 
Damped harmonic oscillator 
 
This time, we introduce the additional force, which will dissipate the energy. 
 

dF bv bx= − = − �  
 
The equation of motion gains one more term: 
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0mx bx kx+ + =�� �  
 
Denote: 
 

2
0,

2
b k
m m

γ ω= =  

 
2

02 0x x xγ ω+ + =�� �  
 
Use exponential trial function 
 

exp( )x tλ=    exp( )x tλ λ=�    2 exp( )x tλ λ=��  
 

22
0exp( )[ 2 ] 0tλ λ γλ ω+ + =  

since 
 
exp( ) 0tλ ≠  

22
02 0λ γλ ω+ + =  

 
22

1 0λ γ γ ω= − + +  
 

22
2 0λ γ γ ω= − − +  

 
1 1 2 2( ) exp( ) exp( )x t A t A tλ λ= +  

2 22 2
1 0 2 0( ) exp( )[ exp( ) exp( )]x t t A t A tγ γ ω γ ω= − + − + − −  

 
 
 
 
 
 
 
 
 
 
 
 
 
Underdamped oscillator 
 

Depending on the sign of the expression under the root, there are three 
possible cases: 
Underdamped 

22
0 0γ ω− <        1λ and 2λ are imaginary: oscillating solutions.   

Overdamped 
22

0 0γ ω− >        1λ and 2λ are both real 
Critically damped 

22
0γ ω=  
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2
2 2

1 0 24
k b
m m

ω ω γ= − = −  

 
 

1 1 2 1( ) exp( )[ exp( ) exp( )]x t t A i t A i tγ ω ω= − +  
 
which recalling Euler's formula becomes 
 

1 2 1 1 2 1( ) exp( ) [ ( )sin( ) ( )cos( )]x t t i A A t A A tγ ω ω= − − + +  
 
Substitute 
 

1 2( )i A A B− =   and  1 2A A C+ =  
 

1 1( ) exp( ) [ sin( ) cos( )]x t t B t C tγ ω ω= − +  
 
Introduce 
 

2 2A B C= +   and tan( ) C
B

φ = −  

1( ) exp( ) cos( )x t A t tγ ω φ= − +  
 
Damped oscillator moves at "frequency" smaller than undamped: 

2
2 2

1 0 0 2
0

1 γω ω γ ω
ω

= − = −  

For small damping γ expand in binomial series and retain only the first two terms 
2 2

1 0 02 2
0 0

(1 .....) (1 )
2 2
γ γω ω ω
ω ω

= − + ≈ −  

and for small damping 0γ ω� and 1 0ω ω≈  
 
Critically damped 
 

1 2λ λ γ= = −  
 
Solution 
 

1 2 1( ) ( ) exp( ) ( )exp( )x t A A t B tγ γ= + − = −  
 
This is not a general solution (it contains just one constant). 
We can show that if  

( ) exp( )x t tγ= −   than ( ) exp( )x t t tγ= −   is also a solution. 
Substitute 
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( ) exp( ) exp( ) (1 )exp( )x t t t t t tγ γ γ γ γ= − − − = − −�  
2( ) (1 )( )exp( ) exp( ) ( 2 )exp( )x t t t t t tγ γ γ γ γ γ γ γ= − − − − − = − −��  

22[ 2 2 (1 ) ]exp( ) 0ot t t tγ γ γ γ ω γ− + − + − =  
2 2[( ) ]exp( ) 0o t tω γ γ− − =    Always satisfied. 

Thus the general solution for a critically damped oscillator is: 
1 2( ) ( ) exp( )x t B B t tγ= + −  

Overdamped 
22

0 2γ ω ω− <  

1 2 2 2( ) exp( )[ exp( ) exp( )]x t t A t A tγ ω ω= − + −  
Energy considerations 
 
Total energy: 
 

( ) (0) fE t E W= +  
 
 
 
Frictional force: 
f bx bv= − = −�  

 
2

0 0 0 0

t t t t

f
dxW fdx f dt fvdt bv dt
dt

= = = = −∫ ∫ ∫ ∫  

 
The rate of energy loss: 
 

2fdWdE bv
dt dt

= = −  

 
2 21 1( ) ( ) ( )

2 2
E t K t U t mx kx= + = +�  

recall that 
1( ) exp( ) cos( )x t A t tγ ω φ= − +  

1 1 1
1

( ) exp( )[ sin( ) cos( )]x t A t t tγω γ ω φ ω φ
ω

= − − + + +�  

Assume that the system is lightly damped (
1

1γ
ω

� ), so we can neglect the second term. 

 
Then: 

2 2 2
1 1 1

1( ) exp( 2 )[ sin ( ) cos ( )]
2

E t A t m t k tγ ω ω φ ω φ= − + + +  

work performed by friction
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Since light damping was assumed, 2 2
1 0

k
m

ω ω≈ =  and  E(t) becomes 

21( ) exp( 2 )
2

E t kA tγ= −  

 
The initial energy  

2
0

1
2

E kA=  

and thus 
0( ) exp( 2 )E t E tγ= −  

(notice that the energy decays twice as fast as amplitude!) 
 
The characteristic decay time (E decreases to E/e) 
 

0
0 exp( 2 )E E

e
γτ= −  

2 1γτ =  
1 2

2 2
m m
b b

τ
γ

= = =  

 
Quality factor 
 
 

energy stored in the oscillator2
energy dissipated in one time period

Q π=  

 
Define P = power loss = rate of energy dissipation 

since one time period 1
1

2T π
ω

=  

the denominator can be written as 

1
1

2PT P π
ω

=  

 
Thus 

1

2
2
EQ

P
π π

ω

=  

Since 
1

1
ω

   - time necessary to complete 1 radian of oscillation, we can redefine Q as 

energy stored in the oscillator
average energy dissipated per radian

Q =  
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For a lightly damped oscillator Q can be calculated as follows: 
 

0( ) exp( 2 )E t E tγ= −  

2dE E
dt

γ= −  

 
Thus the energy dissipated in time t∆ will be equal to 
 

2dEE t E t
dT

γ∆ = ∆ = ∆  

If we choose 
1

1t
ω

∆ =    (time necessary to complete 1 radian) 

 
1

12 / 2
E EQ
E E

ω
γ ω γ

= = =
∆

 

 
For light damping 1 0ω ω≈  and thus 

0

2
Q ω

γ
=  

 
Forced (driven) damped harmonic oscillator  
 
Net force 
 

net s f dF F F F= + +  
 
 
 
where:  sF kx= − ; fF bx= − �  

netF mx= ��  

dmx bx kx F+ + =�� �  
assume harmonic driving force 
 

0 0cos( )dF F tω θ= +  
 
 

0 0cos( )mx bx kx F tω θ+ + = +�� �                
 
This is an inhomogeneous 2-nd order linear differential equation.  Its solution is the sum 
of two parts, according to the following theorem: 
 
 

restoring 
elastic force 

dissipative 
friction force 

driving 
force 

If Xi is a particular solution of an inhomogeneous differential equation, and 
Xn is a solution of a complementary homogeneous equation, then 

X(t)=Xi(t)+Xh(t) 
is a general solution. 



09-723 Proximal Probe Techniques                                     Harmonic Oscillator Summary 

 10

From our previous considerations, the solution of the complementary homogeneous 
equation is given by one of the three equivalent forms: 
 

1 1 2 1( ) exp( ) [ exp( ) exp( )]hx t t A i t A i tγ ω ω= − + + −  

1 1( ) exp( ) [ sin( ) cos( )]hx t t B t C tγ ω ω= − +  

1( ) exp( ) cos( )h h hx t A t tγ ω φ= − +  
 
For an inhomogeneous equation, let's postulate the following particular solution  

( ) cos( )ix t A tω φ= ±  
and focus on the – sign solution. 
 

( ) cos( )ix t A tω φ= −  
 

( ) sin( )ix t A tω ω φ= − −�  
2( ) cos( )ix t A tω ω φ= − −��  

Upon substitution  
2

0cos( ) sin( ) cos( ) cos( )mA t bA t kA t F tω ω φ ω ω φ ω φ ω− − − − + − =  
(for simplicity we assumed that 0 0θ = ). 
 
Recall that: 
 
 
 
 
 
thus 

2

0

[cos cos sin sin ]
[sin cos cos sin ]

[cos cos sin sin ]
cos( )

mA t t
bA t t
kA t t
F t

ω ω φ ω φ
ω ω φ ω φ

ω φ ω φ
ω

− +
− −
+ + =
=

 

 
This can be regrouped as 
 

2

2

0

cos [ cos sin cos ]
sin [ sin cos sin ]

cos( ) 0 sin( )

t mA bA kA
t mA bA kA

F t t

ω ω φ ω φ φ
ω ω φ ω φ φ

ω ω

− + +
− − − +
= +

 

 
Since the cos( )tω  and sin( )tω coefficients on both sides of the equation have to be equal, 
we obtain the system of two equations: 
 

cos( ) cos cos sin sint t tω φ ω φ ω φ− = +  
sin( ) sin cos cos sint t tω φ ω φ ω φ− = −  
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2 0

2

( ) cos sin

( )sin cos 0

Fk m b
A

k m b

ω φ ω φ

ω φ ω φ

− + =

− − =
 

 
From the above it follows that: 
 

22 2
2 0

sin 2tan
cos

bb m
kk m
m

ω
φ ω γωφ
φ ω ω ωω

= = = =
− −−

 

 
thus 
 

2 2 2 2 2
0

2sin
( ) 4

γωφ
ω ω γ ω

=
− +

 

2 2
0

2 2 2 2 2
0

cos
( ) 4

ω ωφ
ω ω γ ω

−=
− +

 

 
Substistute these back to obtain 

( )
0

22 2 2 2
0

/

4

F mA
ω ω γ ω

=
− +

 

 
Thus a particular solution of the inhomogeneous equation is: 
 

( )
0

22 2 2 2
0

/( ) cos( )
4

i
F mx t tω φ

ω ω γ ω
= −

− +
 

 
where 
 

1
2 2

0

2tan γωφ
ω ω

−=
−

 

 
 
The general solution is: 
 

( )
0

1 22 2 2 2
0

/( ) ( ) ( ) exp( ) cos( ) cos( )
4

h i h h
F mx t x t x t A t t tγ ω φ ω φ

ω ω γ ω
= + = − + + −

− +
 

 
 
 

transient term 

steady state term 
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Amplitude resonance 
 
The amplitude of the particular solution reaches maximum when the driving force is 
equal to 
 

2 2
0 2rω ω ω γ= = −  

 
On resonance, the phase shift  

     
2
πφ =                                                                            

Far below resonance  
rω ω� ,   0φ →  

Far above resonance  
rω ω� ,   φ π→  

 
Energy resonance 
 

( ) cos( )x t A tω φ= −      
( ) sin( )v x t A tω ω φ= = − −�  

2 2 2 21 1( ) sin ( )
2 2

K t mv m A tω ω φ= = −  

2 2 21 1( ) cos ( )
2 2

U t kx kA tω φ= = −  

 
2 2 2 21( ) ( ) ( ) [ sin ( ) cos ( )]

2
E t K t U t A m t k tω ω φ ω φ= + = − + −  

Recall that per period: 
2 2 1cos ( ) sin ( )

2
t tω φ ω φ− = − =  

Substitute ( )A ω  to K(t) 
 

( )
2 2

2 20
22 2 2 2

0

1 /( ) sin ( )
2 4

F mK t m tω ω φ
ω ω γ ω

= −
− +

 

( )
2 2

0
22 2 2 2

0

1( )
4 4

FK t
m

ω

ω ω γ ω
=

− +
 

Kinetic energy resonance: 
 

( )
0

d K t
dω

=   for 0ω ω=  
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Potential energy resonance 
 

since 21( )
2

U t kx= , occurs at the same frequency as amplitude resonance 2 2
0 2ω ω γ= −  

 
Total energy resonance.  Resonance peak width and Q 
 

2 2 2 2 21 1( ) sin ( ) cos ( )
2 2

E t A m t A k tω ω φ ω φ= − + −  

 
and after substituting A 
 

( )
2 22

0 0
22 2 2 2

0

1
4 4

FE
m

ω ω

ω ω γ ω

+=
− +

 

 
For very weak damping 0γ ω�  

2 22
0 02ω ω ω+ ≈  

22
0 0 0 0 0( )( ) 2 ( )ω ω ω ω ω ω ω ω ω− = − + ≈ −  

 

( )
2

0
2 2

0

1 1( )
8

FE
m

ω
ω ω γ

=
− +

 

 
 
 
Maximum at 0ω ω=  

2
0

0 2
1 1( )
8

FE
m

ω
γ

=  

The energy is equal ½ of its value at  
2 2

0( )ω ω γ− =  
or 0ω ω γ− = ±  
Resonance peak width at half height 
 

2ω γ∆ =  
Recall from previous considerations that 

0

2
Q ω

γ
=  

This is the basis for determining Q from the energy resonance peak width: 
 

0Q ω
ω

=
∆

. 

Lorentzian 


