Homework (May 5)

10.12 An enzyme has a K_{M} value of $2.8 \times 10^{-5} \mathrm{M}$ and a $V_{\max }$ value of $53 \mu \mathrm{M} \mathrm{min}^{-1}$. Calculate the value of v_{0} if $[\mathrm{S}]=3.7 \times 10^{-4} \mathrm{M}$ and $[I]=4.8 \times 10^{-4} \mathrm{M}$ for (a) a competitive inhibitor, (b) a noncompetitive inhibitor, and (c) an uncompetitive inhibitor. ($K_{\mathrm{I}}=1.7 \times 10^{-5} \mathrm{M}$ for all three cases.)
(a) For a competitive inhibitor, from Equation 10.17,

$$
\begin{aligned}
v_{0} & =\frac{V_{\max }[\mathrm{S}]}{K_{\mathrm{M}}\left(1+\frac{[\mathrm{I}}{K_{\mathrm{I}}}\right)+[\mathrm{S}]} \\
& =\frac{\left(53 \mu \mathrm{M} \mathrm{~min}^{-1}\right)\left(3.7 \times 10^{-4} \mathrm{M}\right)}{\left(2.8 \times 10^{-5} \mathrm{M}\right)\left(1+\frac{4.8 \times 10^{-4} M}{1.7 \times 10^{-5} \mathrm{M}}\right)+3.7 \times 10^{-4} \mathrm{M}} \\
& =16.5 \mu \mathrm{M} \mathrm{~min}^{-1} \\
& =16 \mu \mathrm{M} \mathrm{~min}^{-1}
\end{aligned}
$$

(b) For a noncompetitive inhibitor, Equation 10.19 gives,

$$
\begin{aligned}
& v_{0}=\frac{\frac{v_{\text {max }}}{\left(1+\frac{\mathrm{T}}{\kappa_{\mathrm{I}}}\right)}[\mathrm{S}]}{K_{\mathrm{M}}+[\mathrm{S}]} \\
& =\frac{\frac{53 \mu M \mathrm{~min}^{-1}}{\left(1+\frac{4.8 \times 1 .-1}{1.7 \times 10^{-5} \mathrm{M}}\right)}\left(3.7 \times 10^{-4} \mathrm{M}\right)}{2.8 \times 10^{-5} \mathrm{M}+3.7 \times 10^{-4} \mathrm{M}} \\
& =1.69 \mu M \mathrm{~min}^{-1} \\
& =1.7 \mu \mathrm{M} \mathrm{~min}-1
\end{aligned}
$$

(c) For an uncompetitive inhibitor, Equation 10.22 is appropriate,

$$
\begin{aligned}
v_{0} & =\frac{\frac{v_{\max }}{\left(1+\frac{4}{K_{1}}\right)}[\mathrm{S}]}{\frac{K_{\mathrm{M}}}{\left(1+\frac{1}{K_{1}}\right)}+[\mathrm{S}]} \\
& =\frac{\frac{53 \mu M \min ^{-1}}{\left(1+\frac{4.3 \times \times 10^{-4} M}{17.10^{-5} \mathrm{M}}\right)}\left(3.7 \times 10^{-4} \mathrm{M}\right)}{\frac{2.8 \times 10^{-5} \mathrm{M}}{\left(1+\frac{48 \times 10^{-4} \mathrm{M}}{1.7 \times 10^{-5} \mathrm{M}}\right)}+3.7 \times 10^{-4} \mathrm{M}} \\
& =1.81 \mu \mathrm{M} \mathrm{~min}^{-1} \\
& =1.8 \mu \mathrm{M} \mathrm{~min}^{-1}
\end{aligned}
$$

10.13 The degree of inhibition i is given by $i \%=(1-\alpha) 100 \%$, where $\alpha=\left(v_{0}\right)_{\text {inhtibitian }} / v_{0}$ Calculate the percent inhibition for each of the three cases in Problem 10.12.

First v_{0} in the absence of inhibitor must be found.

$$
\begin{aligned}
v_{0} & =\frac{V_{\max }[\mathrm{S}]}{K_{\mathrm{M}}+[\mathrm{S}]} \\
& =\frac{\left(53 \mu \mathrm{M} \mathrm{~min}^{-1}\right)\left(3.7 \times 10^{-4} \mathrm{M}\right)}{2.8 \times 10^{-5} \mathrm{M}+3.7 \times 10^{-4} \mathrm{M}} \\
& =49.3 \mu \mathrm{M} \mathrm{~min}^{-1}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \alpha=\frac{16.5 \mu M \mathrm{~min}^{-1}}{49.3 \mu M \mathrm{~min}^{-1}}=0.335 \\
& \text { percent inhibition }=(1-0.335)(100 \%)=67 \%
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \alpha=\frac{1.69 \mu M \min ^{-1}}{49.3 \mu M \mathrm{~min}^{-1}}=3.43 \times 10^{-2} \\
& \text { percent inhibition }=\left(1-3.43 \times 10^{-2}\right)(100 \%)=96.7 \%
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \alpha=\frac{1.81 \mu M \mathrm{~min}^{-1}}{49.3 \mu M \mathrm{~min}^{-1}}=3.67 \times 10^{-2} \\
& \text { percent inhibition }=\left(1-3.67 \times 10^{-2}\right)(100 \%)=96.3 \%
\end{aligned}
$$

$$
[\mathrm{S}]=K_{\mathrm{M}}\left(\frac{[\mathrm{~T}]}{K_{\mathrm{I}}\left(\frac{2_{0}}{\left(U_{0}\right)_{\text {hinlibibition }}}-1\right)}-1\right)
$$

The expression for [I] is used in answering the first part of the question. For 65% inhibition, $\left(v_{0}\right)_{\text {inthibitition }}=(1-0.65) v_{0}=0.35 v_{0}$, and

$$
[\mathrm{I}]=\left(3.1 \times 10^{-5} M\right)\left(\frac{1}{0.35}-1\right)\left(1+\frac{3.6 \times 10^{-4} M}{2.7 \times 10^{-3} M}\right)=6.52 \times 10^{-5} M=6.5 \times 10^{-5} M
$$

To reduce the inhibition to 25%, where $\left(v_{0}\right)_{\text {inhlibative }}=0.75 v_{0}$, at this concentration of inhibitor, use the expression for $[\mathrm{S}]$ to find the required substrate concentration.

$$
[\mathrm{S}]=\left(2.7 \times 10^{-3} \mathrm{M}\right)\left[\frac{6.52 \times 10^{-5} \mathrm{M}}{\left(3.1 \times 10^{-5} \mathrm{M}\right)\left(\frac{1}{0.75}-1\right)}-1\right]=1.4 \times 10^{-2} \mathrm{M}
$$

10.32

1/S

The plot shows that at high substrate concentration (low values of $1 /[\mathrm{S}]$), the initial rate of the reaction decreases ($1 / v_{0}$ increases). Thus, the substrate must act as an inhibitor to the enzyme.

