Homework Set \#8

6:27

The dissociation constant can be obtained by plotting $Y /[\mathrm{L}]$ vs Y. The slope is $-1 / K_{\mathrm{d}}$. L and Y are obtained using the following relations:

$$
\begin{aligned}
{[\mathrm{L}] } & =\left[\mathrm{Ca}^{2+}\right]_{\text {tooal }}-\left[\mathrm{Ca}^{2+}\right]_{\text {bound }} \\
Y & =\frac{\left[\mathrm{Ca}^{2+}\right]_{\text {bound }}}{96 \mu M}
\end{aligned}
$$

According to the data given above, the values of [L]. Y, and $Y /[\mathrm{L}]$ are

$[\mathrm{L} y / \mu M$	28.8	68.8	116.6	169.2	396.6
Y	0.3250	0.5333	0.6604	0.7375	0.8688
$\left(Y /[\mathrm{LI}) / 10^{-3} \cdot M^{-1}\right.$	11.28	7.751	5.664	4.359	2.191

The slope of the plot is -16.72×10^{-3}. Therefore,

$$
K_{\mathrm{d}}=\frac{1}{16.72 \times 10^{-3}}=59.8
$$

6.28 An equilibrium dialysis experiment showed that the concentrations of the free ligand, bound ligand, and protein are $1.2 \times 10^{-5} \mathrm{M}, 5.4 \times 10^{-6} \mathrm{M}$, and $4.9 \times 10^{-6} \mathrm{M}$, respectively. Calculate the dissociation constant for the reaction $\mathrm{PL} \rightleftharpoons \mathrm{P}+\mathrm{L}$. Assume there is one binding site per protein molecule.

Since there is one binding site per protein molecule, $[\mathrm{PL}]=[\mathrm{L}]_{\text {bound }}$.

$$
K_{\mathrm{d}}=\frac{[\mathrm{P}][\mathrm{L}]}{[\mathrm{PL}]}=\frac{\left(4.9 \times 10^{-6}\right)\left(1.2 \times 10^{-5}\right)}{5.4 \times 10^{-6}}=1.1 \times 10^{-5}
$$

6.46 The following data show the binding of Mg^{2+} ions with a protein containing n equivalent sites:

$\left[\mathrm{Mg}^{2+}\right]_{\text {total }} / \mu M$	108	180	288	501	752
$\left[\mathrm{Mg}^{2+}\right]_{\text {froe }} / \mu M$	35	65	115	248	446

Apply the Scatchard plot to determine n and $K_{\text {d }}$. The protein concentration is $98 \mu M$.

The Scatchard plot follows from the equation

$$
\frac{Y}{[\mathrm{~L}]}=\frac{n}{K_{\mathrm{d}}}-\frac{Y}{K_{\mathrm{d}}}
$$

and is a plot of $\frac{Y}{[L]} \mathrm{vS} Y$, where

$$
\begin{aligned}
Y & =\frac{\left[\mathrm{Mg}^{2+}\right]_{\text {bound }}}{[P]} \\
{[\mathrm{L}] } & =\left[\mathrm{Mg}^{2+}\right]_{\text {frive }}=\left[\mathrm{Mg}^{2+}\right]_{\text {bocal }}-\left[\mathrm{Mg}^{2+}\right]_{\text {bound }}
\end{aligned}
$$

The slope of the plot is $-\frac{1}{K_{\mathrm{d}}}$ and the intercept is $\frac{n}{K_{\mathrm{d}}}$. The relevant data are given in the table below.

The equation for the best fit line to the data is $y=-5.86 \times 10^{3} x+2.54 \times 10^{4}$. Therefore,

$$
\begin{aligned}
K_{d} & =-\frac{1}{\text { slope }}=-\frac{1}{-5.86 \times 10^{3}}=1.71 \times 10^{-4}=1.7 \times 10^{-4} \\
n & =(\text { intercept })\left(K_{d}\right)=\left(2.54 \times 10^{4}\right)\left(1.71 \times 10^{-4}\right)=4.34 \approx 4
\end{aligned}
$$

