Homework Set #8

6:27

The dissociation constant can be obtained by plotting Y/[L] vs Y. The slope is $-1/K_d$.

L and Y are obtained using the following relations:

$$[L] = \left[Ca^{2+} \right]_{total} - \left[Ca^{2+} \right]_{bound}$$

$$Y = \frac{\left[Ca^{2+} \right]_{bound}}{96 \ \mu M}$$

According to the data given above, the values of [L], Y, and Y/[L] are

[LVμM	28.8	68.8	116.6	169.2	396.6
Y	0.3250	0.5333	0.6604	0.7375	0.8688
$(Y/\{L\})/10^{-3} \cdot M^{-1}$	11.28	7.751	5 664	4 350	2.101

The slope of the plot is -16.72×10^{-3} . Therefore,

$$K_{\rm d} = \frac{1}{16.72 \times 10^{-3}} = 59.8$$

6.28 An equilibrium dialysis experiment showed that the concentrations of the free ligand, bound ligand, and protein are 1.2 × 10⁻⁵ M, 5.4 × 10⁻⁶ M, and 4.9 × 10⁻⁶ M, respectively. Calculate the dissociation constant for the reaction PL

P + L. Assume there is one binding site per protein molecule.

Since there is one binding site per protein molecule, $[PL] = [L]_{bound}$

$$K_{\rm d} = \frac{\rm [P]\,[L]}{\rm [PL]} = \frac{\left(4.9 \times 10^{-6}\right) \left(1.2 \times 10^{-5}\right)}{5.4 \times 10^{-6}} = 1.1 \times 10^{-5}$$

6.46 The following data show the binding of Mg²⁺ ions with a protein containing n equivalent sites:

$$[Mg^{2+}]_{total}/\mu M$$
 108 180 288 501 752 $[Mg^{2+}]_{free}/\mu M$ 35 65 115 248 446

Apply the Scatchard plot to determine n and K_d . The protein concentration is 98 μM .

The Scatchard plot follows from the equation

$$\frac{Y}{[L]} = \frac{n}{K_d} - \frac{Y}{K_d}$$

and is a plot of $\frac{Y}{[L]}$ vs Y, where

$$Y = \frac{\left[Mg^{2+}\right]_{bound}}{[P]}$$

$$[L] = \left[Mg^{2+}\right]_{free} = \left[Mg^{2+}\right]_{total} - \left[Mg^{2+}\right]_{bound}$$

The slope of the plot is $-\frac{1}{K_d}$ and the intercept is $\frac{n}{K_d}$. The relevant data are given in the table below.

The equation for the best fit line to the data is $y = -5.86 \times 10^3 x + 2.54 \times 10^4$. Therefore,

$$K_d = -\frac{1}{\text{slope}} = -\frac{1}{-5.86 \times 10^3} = 1.71 \times 10^{-4} = 1.7 \times 10^{-4}$$

 $n = \text{(intercept)} \ (K_d) = \left(2.54 \times 10^4\right) \left(1.71 \times 10^{-4}\right) = 4.34 \approx 4$