Homework Set \#7

5.60

The ionic strength of the solution is

$$
I=\frac{1}{2} \sum_{i} m_{i} z_{i}^{2}=\frac{1}{2}\left[(0.0020 m)(2)^{2}+(0.0040 m)(-1)^{2}\right]=0.0060 m
$$

(a) The activity coefficients of Mg^{2+} and Cl^{-}can be evaluated using

$$
\log \gamma_{i}=-0.509 z_{i}^{2} \sqrt{I}
$$

For Mg^{2+},

$$
\begin{aligned}
\log \gamma_{+} & =-0.509(2)^{2} \sqrt{0.0060}=-0.158 \\
\gamma_{+} & =0.695=0.70
\end{aligned}
$$

For Cl^{-}.

$$
\begin{aligned}
\log \gamma_{-} & =-0.509(-1)^{2} \sqrt{0.0060}=-3.94 \times 10^{-2} \\
\gamma_{-} & =0.913=0.91
\end{aligned}
$$

(b) The mean ionic activity coefficient is

$$
\gamma_{ \pm}=\left(y_{+}^{v_{+}} \gamma_{-}^{v_{-}}\right)^{1 / v}=\left[(0.695)(0.913)^{2}\right]^{1 / 3}=0.83
$$

5.74 Calculate the solubility of BaSO_{4} (in $\mathrm{g} \mathrm{L}^{-1}$) in (a) water and (b) a $6.5 \times 10^{-5} \mathrm{M} \mathrm{MgSO}_{4}$ solution. The solubility product of BaSO_{4} is 1.1×10^{-10}. Assume ideal behavior.

The equation for the dissolution of BaSO_{4} is

$$
\mathrm{BaSO}_{4}(s) \rightleftharpoons \mathrm{Ba}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q)
$$

(a) If the solubility of BaSO_{4} is $x M$, then there are $x M$ of Ba^{2+} and $x M \mathrm{SO}_{4}^{2-}$ in the solution.

$$
\begin{aligned}
K_{\mathrm{sp}} & =1.1 \times 10^{-10}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=x \cdot x \\
x & =1.05 \times 10^{-5}
\end{aligned}
$$

Therefore,

$$
\text { the solubility of } \mathrm{BaSO}_{4}=\left(1.05 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(\frac{233.4 \mathrm{~g}}{1 \mathrm{~mol}}\right)=2.5 \times 10^{-3} \mathrm{~g} \mathrm{~L}^{-1}
$$

(b) The MgSO_{4} solution contains $6.5 \times 10^{-5} \mathrm{M}$ of SO_{4}^{2-}. If the solubility of BaSO_{4} is $x M$, then there are $x M$ of Ba^{2+} and $x+6.5 \times 10^{-5} \mathrm{M} \mathrm{SO}_{4}^{2-}$ in the solution.

$$
\begin{aligned}
& K_{\mathrm{sp}}=1.1 \times 10^{-10}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=x\left(x+6.5 \times 10^{-5}\right) \\
& x^{2}+6.5 \times 10^{-5} x-1.1 \times 10^{-10}=0 \\
& x=1.65 \times 10^{-6} \quad \text { or } \quad x=-6.67 \times 10^{-5} \text { (nonphysical) }
\end{aligned}
$$

Therefore,

$$
\text { the solubility of } \mathrm{BaSO}_{4}=\left(1.65 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(\frac{233.4 \mathrm{~g}}{1 \mathrm{~mol}}\right)=3.9 \times 10^{-4} \mathrm{~g} \mathrm{~L}^{-1}
$$

5.75 The thermodynamic solubility product of AgCl is 1.6×10^{-10}. What is $\left[\mathrm{Ag}^{+}\right]$in (a) a 0.020 $M \mathrm{KNO}_{3}$ solution and (b) a 0.020 M KCl solution?
(a) First calculate the ionic strength and the mean ionic activity coefficient of the KNO_{3} solution. Since this solution is dilute, its molality has the same numerical value as its molarity. For this solution, $z_{+}=1, z_{-}=-1, m_{+}=m_{-}=0.020 \mathrm{~m}$.

$$
\begin{aligned}
I & =\frac{1}{2}\left[(0.020 \mathrm{~m})(1)^{2}+(0.020 \mathrm{~m})(-1)^{2}\right]=0.020 \mathrm{~m} \\
\log \gamma_{ \pm} & =-0.509|(1)(-1)| \sqrt{0.020}=-7.20 \times 10^{-2} \\
\gamma_{ \pm} & =0.847
\end{aligned}
$$

The molalities of $\mathrm{Ag}^{+}\left(m_{+}\right)$and $\mathrm{Cl}^{-}\left(m_{-}\right)$are the same. m_{+}is calculated from K_{SD}^{0} and $\gamma_{ \pm}$:

$$
\begin{aligned}
K_{\mathrm{sp}}^{0}=1.6 \times 10^{-10} & =a_{+} a_{-}=\gamma_{+} m_{+} \gamma_{-} m_{-} \\
& =\gamma_{ \pm}^{2} m_{+}^{2} \\
& =(0.847)^{2} m_{+}^{2} \\
m_{+} & =1.5 \times 10^{-5}
\end{aligned}
$$

Since the concentration of Ag is very small, its molarity has the same numerical value as its molality. Thus, $\left[\mathrm{Ag}^{+}\right]=1.5 \times 10^{-5} \mathrm{M}$.
(b) The ionic strength of the $0.020 \mathrm{M} \mathrm{KCl}(\approx 0.020 \mathrm{~m})$ solution is the same as the $0.020 \mathrm{M} \mathrm{KNO}_{3}$ solution in (a). However, when AgCl dissolves in this solution, the molalities of $\mathrm{Ag}^{+}\left(\mathrm{m}_{+}\right)$and Cl^{-}(m_{-}) are no longer the same, as KCl contributes extra Cl^{-}. In fact, $m_{-}=m_{+}+0.020 \mathrm{~m}$.

$$
\begin{aligned}
K_{\mathrm{sp}}^{\mathrm{o}}=1.6 \times 10^{-10} & =a_{+} a_{-}=\gamma_{+} m_{+} \gamma_{-} m_{-} \\
& =\gamma_{ \pm}^{2} m_{+} m_{-} \\
& =(0.847)^{2} m_{+}\left(m_{+}+0.020\right) \\
m_{+}\left(m_{+}+0.020\right) & =2.23 \times 10^{-10}
\end{aligned}
$$

Since m_{+}is expected to be much smaller than $0.020, m_{+}+0.020 \approx 0.020$. Therefore,

$$
\begin{aligned}
m_{+}(0.020) & =2.23 \times 10^{-10} \\
m_{+} & =1.1 \times 10^{-8}
\end{aligned}
$$

Indeed, m_{+}is insignificant compared with 0.020 .

Since the concentration of Ag^{+}is very small, its molarity has the same numerical value as its molality. Thus, $\left[\mathrm{Ag}^{+}\right]=1.1 \times 10^{-8} \mathrm{M}$.
5.78 A $0.010 m$ aqueous solution of the ionic compound $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{3}$ has a freezing-point depression of 0.0558 K . What can you conclude about its structure? Assume the compound is a strong
electrolyte. electrolyte.

The van't Hoff factor is

$$
i=\frac{\Delta T}{K_{\mathrm{f}} m_{2}}=\frac{0.0558 \mathrm{~K}}{\left(1.86 \mathrm{~K} \mathrm{~mol}^{-1} \mathrm{~kg}\right)\left(0.010 \mathrm{~mol} \mathrm{~kg}^{-1}\right)}=3.0
$$

There are 3 particles in the solution per 1 particle before dissociation. Thus, the compound is probably $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2}\right] \mathrm{Cl}_{2}$, which on dissolution, dissociates into $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ and $2 \mathrm{Cl}^{-}$.
5.69 The concentrations of K^{+}and Na^{+}ions in the intracellular fluid of a nerve cell are approximately $400 \mathrm{~m} M$ and $50 \mathrm{~m} M$, respectively, but in the extracellular fluid the K^{+}and Na^{+} concentrations are $20 \mathrm{~m} M$ and 440 mM , respectively. Given that the electric potential inside the cell is -70 mV relative to the outside, calculate the Gibbs energy change for the transfer of 1 mole of each type of ion against the concentration gradient at $37^{\circ} \mathrm{C}$.

In each case the Gibbs energy change going against the concentration gradient is found using

$$
\Delta G=R T \ln \frac{\left[\mathrm{~K}^{+}\right]_{\text {higher }}}{\left[\mathrm{K}^{+}\right]_{\text {lower }}}+z F \Delta V
$$

Note that $1 \mathrm{~V}=1 \mathrm{JC}^{-1}$
For \mathbf{K}^{+}:

$$
\begin{aligned}
\Delta G & =R T \ln \frac{\left[\mathrm{~K}^{+}\right]_{\text {in }}}{\left[\mathrm{K}^{+}\right]_{\text {out }}}+z F \Delta V \\
& =\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(310 \mathrm{~K}) \ln \frac{400 \mathrm{mM}}{20 \mathrm{mM}}+(1)\left(96500 \mathrm{C} \mathrm{~mol}^{-1}\right)(-0.070 \mathrm{~V}) \\
& =966 \mathrm{~J} \mathrm{~mol}^{-1}=0.97 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

For Na^{+}:

$$
\begin{aligned}
\Delta G & =R T \ln \frac{\left[\mathrm{Na}^{+}\right]_{\text {out }}}{\left[\mathrm{Na}^{+}\right]_{\text {in }}}+z F \Delta V \\
& =\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(310 \mathrm{~K}) \ln \frac{440 \mathrm{~m} M}{50 \mathrm{mM}}+(1)\left(96500 \mathrm{C} \mathrm{~mol}^{-1}\right)(+0.070 \mathrm{~V}) \\
& =1.24 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1}=12 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

