4.8 Calculate the values of $\Delta U, \Delta H$, and $\Delta S$ for the following process:

1 mole of liquid water at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm} \rightarrow 1 \mathrm{~mol}$ of steam at $100^{\circ} \mathrm{C}$ and 1 atm
The molar heat of vaporization of water at 373 K is $40.79 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the molar heat capacity of water is $75.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Assume the molar heat capacity to be temperature independent and ideal-gas behavior.

The problem can be solved readily by breaking down the process into two steps, each carried out at 1 atm : (1) $\mathrm{H}_{2} \mathrm{O}(l)$ is heated from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, then (2) $\mathrm{H}_{2} \mathrm{O}(l)$ at $100^{\circ} \mathrm{C}$ is heated to effect the phase transformation to $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $100^{\circ} \mathrm{C}$.

## Step 1

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(l), 25^{\circ} \mathrm{C} \rightarrow \mathrm{H}_{2} \mathrm{O}(l), 100^{\circ} \mathrm{C} \\
\Delta H=C_{P} \Delta T=(1 \mathrm{~mol})\left(75.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(373.2 \mathrm{~K}-298.2 \mathrm{~K})=5.648 \times 10^{3} \mathrm{~J}
\end{gathered}
$$

$\Delta U$ is related to $\Delta H$ by

$$
\Delta U=\Delta H-P \Delta V
$$

Since both reactant and product are in the liquid phase, $\Delta V$ is negligible. Therefore,

$$
\begin{gathered}
\Delta U=\Delta H=5.648 \times 10^{3} \mathrm{~J} \\
\Delta S=C_{P} \ln \frac{T_{2}}{T_{1}}=(1 \mathrm{~mol})\left(75.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \frac{373.2 \mathrm{~K}}{298.2 \mathrm{~K}}=16.89 \mathrm{~J} \mathrm{~K}^{-1}
\end{gathered}
$$

## Step 2

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(l), 100^{\circ} \mathrm{C} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), 100^{\circ} \mathrm{C} \\
\Delta H=n \Delta_{\text {vap }} \bar{H}=(1 \mathrm{~mol})\left(40.79 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)=40.79 \mathrm{~kJ}
\end{gathered}
$$

To calculate $\Delta U$, the change in volume must first be determined. Since the volume of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, $V_{\mathrm{g}}$ is much greater than that of $\mathrm{H}_{2} \mathrm{O}(l), V_{\mathrm{l}}$, the latter is ignored.

$$
\begin{aligned}
\Delta U & =\Delta H-P \Delta V=\Delta H-P\left(V_{\mathrm{g}}-V_{1}\right)=\Delta H-P V_{\mathrm{g}} \\
& =\Delta H-P \frac{n R T}{P}=\Delta H-n R T \\
& =40.79 \mathrm{~kJ}-(1 \mathrm{~mol})\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(373.2 \mathrm{~K})\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right) \\
& =37.687 \mathrm{~kJ} \\
& \Delta S=\frac{\Delta_{\mathrm{vap}} H}{T_{\mathrm{b}}}=\frac{40.79 \times 10^{3} \mathrm{~J}}{373.15 \mathrm{~K}}=109.31 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

The values of $\Delta H, \Delta U$, and $\Delta S$ for the entire process can be obtained by summing the corresponding quantities calculated in the two steps:

$$
\begin{aligned}
\Delta H & =5.648 \mathrm{~kJ}+40.79 \mathrm{~kJ}=46.44 \mathrm{~kJ} \\
\Delta U & =5.648 \mathrm{~kJ}+37.687 \mathrm{~kJ}=43.34 \mathrm{~kJ} \\
\Delta S & =16.89 \mathrm{~J} \mathrm{~K}^{-1}+109.31 \mathrm{~J} \mathrm{~K}^{-1}=126.2 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

4.10 A quantity of 6.0 moles of an ideal gas is reversibly heated at constant volume from $17^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. Calculate the entropy change. What would be the value of $\Delta S$ if the heating were carried out irreversibly?

At constant volume, $d q_{\mathrm{rev}}=C_{V} d T$.

$$
\begin{aligned}
\Delta S & =\int \frac{d q_{\mathrm{rev}}}{T}=\int \frac{C_{V} d T}{T}=C_{V} \ln \frac{T_{2}}{T_{1}}=\frac{3}{2} n R \ln \frac{T_{2}}{T_{1}} \\
& =\frac{3}{2}(6.0 \mathrm{~mol})\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \frac{308 \mathrm{~K}}{290 \mathrm{~K}} \\
& =4.5 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

If heating were carried out irreversibly, $\Delta S$ is still $4.5 \mathrm{~J} \mathrm{~K}^{-1}$ because $S$ is a state function so that $\Delta S$ depends only on the final and initial states. $\Delta S$ must be calculated, however, using a reversible pathway.
4.14 A sample of neon $(\mathrm{Ne})$ gas initially at $20^{\circ} \mathrm{C}$ and 1.0 atm is expanded from 1.2 L to 2.6 L and simultaneously heated to $40^{\circ} \mathrm{C}$. Calculate the entropy change for the process.

The number of moles of Ne can be determined using the initial conditions and the ideal gas law.

$$
\left.n=\frac{(1.0 \mathrm{~atm})(1.2 \mathrm{~L})}{(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}}{ }^{-1} \mathrm{~mol}^{-1}\right)(293 \mathrm{~K}) \quad=4.99 \times 10^{-2} \mathrm{~mol}
$$

The problem can be solved by breaking down the process into 2 steps: (1) isothermal expansion from 1.2 L at 1.0 atm to 2.6 L . The temperature is kept at $20^{\circ} \mathrm{C}$; (2) heating at constant volume $(2.6 \mathrm{~L})$ from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. The entropy changes for these two steps, $\Delta S_{1}$ and $\Delta S_{2}$ are

$$
\begin{aligned}
\Delta S_{1} & =n R \ln \frac{V_{2}}{V_{1}}=\left(4.99 \times 10^{-2} \mathrm{~mol}\right)\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \frac{2.6 \mathrm{~L}}{1.2 \mathrm{~L}}=0.321 \mathrm{~J} \mathrm{~K}^{-1} \\
\Delta S_{2} & =C_{V} \ln \frac{T_{2}}{T_{1}}=\frac{3}{2} n R \ln \frac{T_{2}}{T_{1}}=\frac{3}{2}\left(4.99 \times 10^{-2} \mathrm{~mol}\right)\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \frac{313 \mathrm{~K}}{293 \mathrm{~K}} \\
& =4.11 \times 10^{-2} \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

The entropy change for the entire process is

$$
\Delta S=\Delta S_{1}+\Delta S_{2}=0.321 \mathrm{JK}^{-1}+4.11 \times 10^{-2} \mathrm{~J} \mathrm{~K}^{-1}=0.36 \mathrm{~J} \mathrm{~K}^{-1}
$$

4.22 One mole of an ideal gas is isothermally expanded from 5.0 L to 10 L at 300 K . Compare the entropy changes for the system, surroundings, and the universe if the process is carried out (a) reversibly, and (b) irreversibly against an external pressure of 2.0 atm .
(a) For the reversible process,

$$
\begin{aligned}
& \Delta S_{\text {sys }}=n R \ln \frac{V_{2}}{V_{1}}=(1 \mathrm{~mol})\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \frac{10 \mathrm{~L}}{5.0 \mathrm{~L}}=5.8 \mathrm{~J} \mathrm{~K}^{-1} \\
& \Delta S_{\text {sur }}=-5.8 \mathrm{~J} \mathrm{~K}^{-1} \\
& \Delta S_{\text {univ }}=0 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

(b) $\Delta S_{\text {sys }}$ is the same as above, that is, $5.8 \mathrm{~J} \mathrm{~K}^{-1}$.
$\Delta S_{\text {surr }}$ can be calculated once $q_{\text {surr }}$ is determined. The latter quantity is related to $q_{\text {sys }}$, which in turn can be calculated from the work done by the system, $w$, and the first law of thermodynamics.

$$
w=-P_{\mathrm{ex}} \Delta V=-(2.0 \mathrm{~atm})(10 \mathrm{~L}-5.0 \mathrm{~L})\left(\frac{101.3 \mathrm{~J}}{1 \mathrm{Latm}}\right)=-1.01 \times 10^{3} \mathrm{~J}
$$

According to the first law, $\Delta U=q+w$. For an ideal gas, $\Delta U=0$ for an isothermal process, and $q_{\text {sys }}=q=-w=1.01 \times 10^{3} \mathrm{~J}$. The entropy change of the surroundings is

$$
\Delta S_{\text {surr }}=\frac{q_{\text {surr }}}{T_{\text {surr }}}=\frac{-q_{\text {sys }}}{T_{\text {surr }}}=\frac{-1.01 \times 10^{3} \mathrm{~J}}{300 \mathrm{~K}}=-3.4 \mathrm{~J} \mathrm{~K}^{-1}
$$

Therefore,

$$
\Delta S_{\text {univ }}=5.8 \mathrm{~J} \mathrm{~K}^{-1}-3.4 \mathrm{~J} \mathrm{~K}^{-1}=2.4 \mathrm{~J} \mathrm{~K}^{-1}
$$

4.24 Consider the reaction

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)
$$

Calculate the values of $\Delta_{\mathrm{r}} S^{\circ}$ for the reaction mixture, surroundings, and the universe at 298 K . Why is your result reassuring to Earth's inhabitants?

$$
\begin{aligned}
\Delta_{\mathrm{r}} S^{\mathrm{o}} & =2 \bar{S}^{\mathrm{o}}[\mathrm{NO}(g)]-\bar{S}^{\mathrm{o}}\left[\mathrm{~N}_{2}(g)\right]-\bar{S}^{\mathrm{o}}\left[\mathrm{O}_{2}(g)\right] \\
& =2\left(210.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)-191.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}-205.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =24.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

$\Delta S_{\text {surr }}^{\mathrm{o}}$ is determined from $\Delta_{\mathrm{r}} H^{\mathrm{o}}$ and the temperature of the surroundings.

$$
\begin{aligned}
\Delta_{\mathrm{r}} H^{\mathrm{o}} & =2 \Delta_{\mathrm{f}} \bar{H}^{\mathrm{o}}[\mathrm{NO}(g)]-\Delta_{\mathrm{f}} \bar{H}^{\mathrm{o}}\left[\mathrm{~N}_{2}(g)\right]-\Delta_{\mathrm{f}} \bar{H}^{\mathrm{o}}\left[\mathrm{O}_{2}(g)\right] \\
& =2\left(90.4 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-0 \mathrm{~kJ} \mathrm{~mol}^{-1}-0 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& =180.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta H_{\text {surr }}^{\circ} & =-\Delta_{\mathrm{r}} H^{\mathrm{o}}=-180.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta S_{\text {surr }}^{\mathrm{o}} & =\frac{\Delta H_{\text {surr }}^{\circ}}{T}=\frac{-180.8 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{298 \mathrm{~K}}=-607 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Therefore,

$$
\Delta S_{\mathrm{univ}}=24.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}-607 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=-582 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

This is not a spontaneous process at 298 K . Therefore, $\mathrm{O}_{2}$, which is essential to us, does not react with $\mathrm{N}_{2}$ in the atmosphere at 298 K .

