Lecture 2: Acquired Immunity

Key Points:

- Acquired Immunity
- Antigen Presentation
- Humoral Immunity
- B-Cells +B-cell receptor
- T-Cells + T-cell receptor

- MHC, class I and class II
- Spleen
- Lymphatic System
- Mucosal associated lymphatic tissue
- Clonal Selection

2. Molecules and Cells of the Acquired Immune System.

Humoral Immunity:soluble factors in the serum (e.g. antibodies)Cellular Immunity:associated with cells

2.1 B-cells:

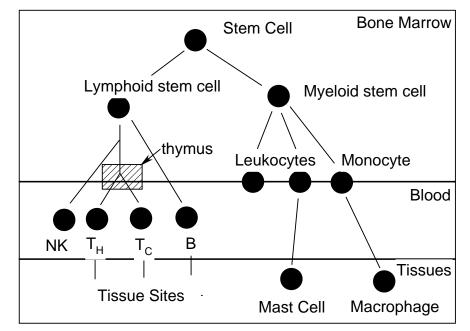
- Mature in the <u>b</u>one marrow (or bursa in birds)
- **B-cell receptor** binds *foreign* material (proteins, carbohydrates, etc.)
- receptor is a membrane bound antibody (IgM) plus two copies of a hetero-dimeric signaling domain (Ig_{α} and Ig_{β}). Cytoplasmic section of Ig_{α} and Ig_{β} can be phosphorylated, initiating a kinase signal cascade.
- All B-cell receptors are identical on a single B-cell, but diversity is on the order of 10⁸ different B-cells.
- Stimulated B-cells differentiate into plasma cells that secrete copious quantities of antibody.
- Stimulated B-cells also form memory B-cells that do not secrete antibody.
- Stimulation of B-cells is enhanced by T-cells.

2.2 T-cells:

- Produced in bone marrow, but mature in the thymus.
- Recognize foreign *peptides* bound to major **histocompatibility proteins** (MHC) via the **T-cell receptor**.
- T- cell receptor composed of either $\alpha\beta$ chains or $\delta\gamma$ chains.
- Each T-cell has a homogenous population of T-cell receptor, but diversity is estimated to be on the order of 10^{12} .
- Associated with phosphorylation signaling domain (CD3) (Cluster of Differentiation 3), composed of $\zeta \zeta$, $\gamma \varepsilon$, $\varepsilon \delta$ homo/heterodimeric molecules.

T-helper cells (T_H):

- express CD4 (<u>Cluster of Differentiation 4</u>) on surface (CD4⁺)
- CD4 recognizes class II MHC (*self*) in complex with *foreign* peptides on antigen presenting cells, leading to activation of T_H cell.
- Activation causes release of cytokines that activate B-cells, macrophages, T_c cells.


Cytotoxic T cells (T_C)

- express $\overline{CD8}$ on cell surface ($\overline{CD8^+}$).
- CD8 recognizes class I HMC/foreign peptides on almost any cell, leading to formation of a cytotoxic T lymphocyte (CTL)

2.3 MHC Complexes: Heterodimeric and membrane bound.

	Class I - MHC	Class II - MHC
Composition	α 1- α 2- α 3, β 2 microglobulin	α1-α2, β1-β2
Type of cell	All cells	Antigen Presenting Cells (APC): -macrophages -dendritic cells -B lymphocytes
Recognized by:	T _C cells	T _H cells
Associated with:	-viral infection -tumor cells -transplant rejection	-bacterial infection -viral infection -protein allergins -other pathogens

2.4 Development of Immune Cells:

3. Example of Humoral and Cellular Cooperation In Bacterial Infection (A day in the life of a B-cell)

- 1. Progenitor B-cell develops into mature B cell in bone marrow, developing a unique antibody on its surface.
- 2. If the antibody does not recognize self, then the mature B-cell is allowed to leave the bone marrow $(10^7 \text{ new B-cells are produced/day})$.

- 3. B-cells that encounter a foreign particle that can bind to the immunoglobulin on the cell surface become stimulated. If the B-cell does *not* have a successful encounter it dies within a few days.
- 4. In addition to B-cells, macrophages and dendritic cells may also ingest foreign particle.
- 5. Bound bacteria are internalized by endocytosis (B-cells), or phagocytosis.
- 6. Bacterial peptides, complexed to class II MHC molecules, are presented on the surface of B-cells, macrophages, and dendritic cells.
- Specific T_H-cells recognize foreign peptide bound to class II MHC, via CD4/T-cell receptor-MHC/peptide interactions, leading to activation of the T_H-cell, cell division of that particular T_H-cell, and subsequent formation of memory T_H-cells.
- 8. Activated T_{H} -cells secretes cytokines that activate B-cells.
- 9. Cytokines induce the differentiation & cell division of B-cells into antibody secreting plasma cells and memory B-cells.
- 10. Plasma cells can secrete 10^3 molecules of antibody/sec! Fortunately, plasma cells live only a few days, but can produce about 10^{10} antibodies in that time.
- 11. Antibody produced by plasma cells coats (opsinizes) bacteria, leading to more efficient phagocytosis of the foreign particles as well as cell destruction by complement.
- 12. Subsequent infection by the same bacteria will lead to a more rapid response because of the presence of memory T- and B-cells. The primary response occurs within 14 days. The secondary response occurs within 3 or 4 days and produces 10-100 fold more antibody.
- 1. Note that in four days a single E. coli will double about 200 times, giving rise to more bacterial cells than the number of cells in the human host. Clearly, innate responses play an important role.
- 2. The activation of B- and T-cells by foreign antigen leads to an increase in the number of both types of cells. This antigen-dependent amplification of cells is referred to as **clonal selection**, since a specific sub-population, or clone, of B and T cells is involved.

3. Organs of the Immune System:

3.1 Primary organs:

- Thymus: Responsible for maturation of the T cells. Only T-cells that can recognize *foreign* peptides *in complex with self MHC* are allowed to leave the thymus.
- Bone Marrow: Responsible for maturation of B cells. Only B cells that express an *intact immunoglobulin* that recognizes *foreign* molecules are allowed to leave the bone marrow. B-cells that recognize self are destroyed.

3.2 Secondary organs:

Spleen:

- Traps foreign particles from the blood via dendritic cells. B-cells and T-cells activated by dendritic cells

Lymphatic system:

- Traps local foreign bodies near the source of infections. Drains fluid from cells to lymph nodes and follicles, eventually returning fluid to the blood. Nodes and follicles contain B-cells, T-cells, macrophages, and dendritic cells. Dendritic cells engulf foreign particles, leading to activation of B and T cells.

- Highly organized follicles are present in small intestine (Peyer's patches) and tonsils and are part of the Mucosal-Associated Lymphoid Tissue (MALT)

Mucosal-Associated Lymphoid Tissue:

- Lymphoid follicles adjacent to mucosal membranes (e.g. tonsils, Peyer's patches).
- Specialized M-cell in wall of mucus membrane entraps foreign particle, delivering it to lymphocytes on the other side of the mucosa. This leads to activation of B-cells which migrate to the mucosa and deliver antibodies (IgA class) across the mucosal membrane.

3.3 Circulation Though the Lymphatic System.

- A lymphocyte in the blood will enter the lymphatic system 2-12 hours after it is released from the bone marrow or thymus.
- Approximately $3x10^{11}$ lymphatic cells flow through the system on a given day.
- A similar number are processed through the spleen.
- This high flux of cells insures that a foreign antigen will meet the appropriate B and T cells within a short period of time.