Lecture 8: Thermodynamics & Protein Stability

Assigned reading in Campbell: Chapter 4.4-4.6

Key Terms:

 $\Delta G = -RT \ln K_{eq} = \Delta H - T\Delta S$ Transition Curve, Melting Curve, Tm ΔH calculation ΔS calculation van der Waals forces Electrostatic interactions Hydrogen bonds Hydrophobic effect Determining ΔH (van't Hoff Plot) Determining ΔS

Molecular Interaction	Enthalpy or Entropy?	Stabilizes Folded State (yes/no)	Relationship to structure of folded state
Van der Waals		Yes	Tight packing of residues in non-polar core
Hydrogen Bond			
Configurational Entropy S=RInW	Entropy		
Hydrophobic Effect			

8.1 Comparison of Calculated and Predicted Thermodynamics for Protein G

 $\Delta G = \Delta H - T \Delta S$

Enthalpic Term: Hydrogen Bonds

Assume that a hydrogen bond to water has an enthalpy of -20 kJ/mol, while in secondary structure the enthalpy is -22 kJ/mol. Both relative to no hydrogen bond at all. The enthalpy change/H-bond is then:

 $\Delta H = H_{water} - H_{protein} = -20 - (-22) = +2kJ/mol$

Assuming 60 residues, the total enthalpy change is +120 kJ/mol. In other words, 120 kJ/mole would have to be put into the system to break all of the main-chain hydrogen bonds.

Entropic Term: Configurational Entropy

The entropy is given by $S = R \ln W$.

In the *folded* state, W = 1, therefore S = 0 In the *unfolded state*, each residue can assume 9 different combinations of Φ (3) and Ψ (3) torsional angles. Therefore, the entropy of a single residue in the unfolded state is 9.

For a polypeptide of length N, the number of conformations is $W = 9^N$, giving an entropy of S = NR In9. In the case of protein G, with its 60 residues:

A comparison between the calculated and measured thermodynamic properties:

Thermodynamic parameter	Calculated	Measured
ΔH	+120 kJ/mol (H-bonds only, 2 kJ/mol per H-bond)	+210 kJ/mol
ΔS	+1096 J/mol-deg (Main-chain entropy)	+616 J/mol-deg

The measured ΔH is larger than the calculated ΔH . Where does the excess enthalpy come from?

- i. **van der Waals Forces**. Forces between atoms are attractive and occur between any pair of atoms at distances of 4-6 A° (polar or non-polar). Typical ΔGs are 0.5-1.0 kJ/mol per pair of atoms. The interior of folded proteins is tightly packed. Proteins have very few cavities on the order of the size of a water molecule. Rather, each core side chain fits into a complementary space created by several (5-8) of the other core side chains.
- ii. **Hydrogen bonds** are due primarily to partial electrostatic charges. Typical ΔGs are 1-2 kJ/mol per H-bond. In addition to the main chain H-bonds that are found in regular secondary structure, there are also side chain-side chain as well as side chain-main chain H-bonds in proteins. These additional H-bonds contribute another ~0.5 kJ/residue.
- iii. **Electrostatic Interactions.** Although most charged residues are on the surface of a folded protein and contribute little to the stability of the folded state (this is due to the high dielectric constant of water *D*=80), a charged residue is infrequently seen in the

core of a protein. In this case, there is a large energetic advantage in burying a group of opposite charge nearby (or a corresponding penalty for leaving it unpaired). This is due to the small dielectric constant of the hydrophobic protein core (D=2-4).

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{Dr^2}$$

The measured ΔS is smaller than the calculated ΔS . Why? The unfolding of protein G results in a smaller change in entropy than that predicted from a consideration of conformational entropy. Apparently, the large increase in entropy of the protein that arises from releasing the restriction of Φ and Ψ angles is compensated by a decrease in entropy of something else in the system.

This additional decrease in entropy is due to the *hydrophobic effect* – "the driving force for protein folding". The hydrophobic effect is due to the entropy of the *water* in the system. When a non-polar side chain is exposed to water it orders, or decreases the entropy, of the water molecules. However, when the non-polar residue becomes buried in the non-polar center of the protein it releases all of the water that coated it. The released water can now freely diffuse in the solvent.

Energetic Grand Total:

A very rough estimate of the contribution of the above factors to ΔG for unfolding of an ~60 residue protein are (in units of free energy at T = 300K):

Energetic Term	Contribution	Physical Description	
Conformational Entropy	-1,500 kJ/mol	Disorder of main and side chains	
Hydrophobic Effect	+1,255 kJ/mol	Ordering of water molecules	
Van der Waals	+170 kJ/mol	Breakage of van der Waals contacts in the protein core	
Hydrogen Bonds	+45 kJ/mol	Breakage of main chain and side chain H-bonds	
Electrostatic Interactions	+5 kJ/mol	Loss of favorable charge- charge interactions	
Net Sum	+25 kJ/mol		

The bottom line: Proteins are only marginally stable under physiological conditions!

8.2 Determining ΔH and ΔS from Protein Melting Curves:

In the case of protein *denaturation*, where $N \rightarrow U$

Melting Temperature, Tm: Since ΔG depends on temperature, a temperature exists at which $\Delta G = \mathbf{0}$. At this point native (N, folded) and unfolded (U, denatured) states are equal in energy and therefore equal in concentration. At

$$\Delta G = \mathbf{0}, \ K_{eq} = \frac{\lfloor U \rfloor}{\lfloor N \rfloor} = \mathbf{1}.$$

At this temperature:

$$\Delta H = T_M \Delta S$$

Below this temperature, the native state is more stable: ($\Delta G > 0$), $K_{eq} < 1$

Above this temperature, the native state is less stable: ($\Delta G < 0$), $K_{ea} > 1$

Extracting ΔH and ΔS from a melting curve:

The temperature dependence of the equilibrium constant can be used to determine ΔH .

Equating the two expressions for ΔG :

$$\Delta H - T\Delta S = -RT \ln K_{eq}$$

This is the equation of a straight line. If In Keq is plotted versus 1/T, then:

Slope = $-\Delta H/R$ or ΔH = -R x slope

This plot is referred to as the van't Hoff Plot.

Example calculation:

Use the data from protein G for an example. The equilibrium constant at various temperatures is obtained from the melting curve. In practice, reliable values can only be obtained in the range of fN = 0.95 to 0.05.

Selecting a couple of values from the melting curve:

T (K)	1/T	FN	Keq = fU/fN	In(Keq)
330	.00303	0.93	.07/.93 = 0.08	- 2.70
340	.00294	0.60	.40/.60 = 0.66	- 0.41

(Remember $f \cup + f N = 1$)

Calculating the slope:

 $\Delta y / \Delta x = (-0.41 - (-2.70)) / (.00294 - .00303) = -2.29 / 9 \times 10^{-5} = -25,444$

Therefore the ΔH is: 211 kJ/mol (25444 x 8.3 J/mol-K), where R = 8.3 J/mol-degK.

 ΔS calculation:

Once ΔH is found, ΔS can be easily found:

$$\Delta S = \frac{\Delta H}{T_m}$$

Tm = 342K,

so ΔS = 211,000 J/mol / 342 K = 616 J/mol-degK

Common Errors:

Forgetting to work in Kelvin Mixing kJ (enthalpy) and J (entropy).

