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 Abstract
 This paper is motivated by computational issues in shape grammar theory.  Specifically, we
 consider the computational complexity of shape arithmetic based on the maximal
 representation of shapes.  The maximal representation is derived from spatial operations that
 specify a shape algebra, which is proven to satisfy the axioms of a boolean ring.  The running
 time of each shape operation is shown to be a quasi-linear function of  f  (  n  ), the asymptotic
 upper bound on the time to compare two elements.  We consider the nature of  f  (  n  ) for shapes

 made up of finite arrangements of points, lines, planes and volumes respectively.

 1. INTRODUCTION

 This paper is motivated by computational issues in spatial editing in general and shape
 grammars in particular (Stiny, 1980).  There are two kinds of problems of different magnitude
 that affect shape grammar computation.  One is the problem of performing arithmetic on
 shapes, necessary to implement rule application.The second, and more difficult, deals with the
 problem of emergent shapes.  A prime requirement for shape grammar computation is that  any
 subshape of a shape is spatially replaceable.  That is, a shape with definite description has

 indefinitely many ‘touchable’ parts.
 The representation of shapes and efficient algorithms for their manipulation have long
 interested researchers in computer-aided design and modelling.  Representations for solids
 such as CSG and boundary representations are well known and well documented (Mäntylä,
 1988).  While these approaches have advantages, they are not easily amenable to problems that
 arise in connection with shape grammars.  In this respect, the maximal representation of shapes
 (Krishnamurti, 1992a) is superior to the two mentioned above.  It has the further advantage that
 shapes can be treated in a uniform manner independent of the dimensionality of its spatial
 elements.  In this paper, we consider the computational complexity of shape arithmetic defined

 on a maximal representation of shapes.

 2. ALGEBRAS OF SHAPES

 A  shape   is a finite arrangement of spatial elements from among points, lines, planes,
 volumes, or higher dimensional hyperplanes, of limited but non-zero measure.  A shape is a
 member of an algebra  U   that is ordered by a part relation and closed under operations of sum

 and difference, and Euclidean transformations augmented by scale (Stiny, 1991).
 A shape is a  part   of another shape if it is embedded in the other shape as a smaller or equal
 element.  A part of a shape is also called a  subshape  , and specifies the relation,  ≤  .  The
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 operation of  sum   combines two shapes, and the operation of  difference   takes the relative
 complement of one shape with respect to another.  The operation of  product   finds the common
 part of two shapes, and the operation of  symmetric difference   combines the relative
 complements of two shapes, each with respect to the other.  The operations of sum and

 difference are defined in terms of the part relation as follows: 
 The sum of two shapes  a   and  b   is a shape  c   =  a   +  b   =  b   +  a  , such that  a   and  b   are parts of  c
 and any part of  c   is either a part of  a   or  b  , or can be divided into two parts, of which one

 belongs to  a   and the other belongs to  b  . 
 The difference of two shapes  a   and  b  , in that order, is a shape  c   =  a    −    b  , such that  c   is a part
 of  a  , any part of  c   is not a part of  b  , and the sum of  b   and  c   equals the sum of  a   and  b  .  The

 algebra has a zero given by the empty shape.
 These definitions can also be expressed in terms of set operations on point sets.  The
 operation of sum is equivalent to the point set operation of union and the operation of
 difference to the point set operation of difference or relative complement.  The product  a    ⋅    b   of
 two shapes  a   and  b   is equivalent to the point set operation of intersection;  a    ⋅    b   =  b    ⋅    a   =  a    −   (  a
 −    b  ) =  b    −   (  b    −    a  ).  The symmetric difference of two shapes  a   and  b   is defined as  a    ⊕    b = b ⊕  a

 = (  a    −    b  ) + (  b    −    a  ).
 Inversely, the operations of sum and difference may be defined in terms of the operations of

 product and symmetric difference as follows:  a    −    b   =  a    ⋅   (  a    ⊕    b  ),  a   +  b   =  a    ⊕    b    ⊕   (  a    ⋅ b).
 We denote by  U  0  , the algebra of points;    by  U  1  , the algebra of lines; by  U  2  , the algebra of
 planes; by  U  3  , the algebra of volumes and so on.  In general,  U  n   denotes the algebra of finite
 arrangements of  n  -dimensional hyperplanes of limited but nonzero measure.  If the shapes are
 defined in a  k  -dimensional space,  k  ≥   n  , its corresponding algebra is denoted by  U  n,k  .  A shape
 may consist of more than one kind of spatial element, in which case it belongs to the algebra

 given by the Cartesian product of the algebras of its spatial element types.

 Figure 1. Two shapes  a   and  b  , their sum, differences, product and symmetric difference; all
 shapes in  U  3  .

 shape  a

 shape  b

 a   +  b

 a    ⋅    b

 a    −    b

 b    −    a

 a    ⊕    b



 Figure 1 illustrates the specification of shapes in  U  3  .
 Stiny (1991, 1992) has stated that algebras of shapes have the following property.  We give a

 formal proof.

 Definition  : A  boolean ring   is a non-empty set  ℜ   in which two binary operations “  ⊕  ” and “  ⋅  ”
 are defined satisfying the following condition (Arnold, 1962):

 If  a  ,  b  ,  c   are any elements of  ℜ  , then
 (a)  Closure:  a    ⊕    b   and  a    ⋅    b   are unique elements of  ℜ  .
 (b)  Commutativity of “  ⊕  ”:  a    ⊕    b   =  b    ⊕    a  .
 (c)  Associativity of “  ⊕  ”:  a    ⊕   (  b    ⊕    c  ) = (  a    ⊕    b  )  ⊕    c  .
 (d)  Solvability of Equations: The equation  a    ⊕    x   =  b   has at least one solution in  ℜ  .
 (e)  Associativity of “  ⋅  ”:  a    ⋅   (  b    ⋅    c  ) = (  a    ⋅    b  )  ⋅    c  .
 (f)  Distributivity:  a    ⋅   (  b    ⊕    c  ) =  a    ⋅    b    ⊕    a    ⋅    c   and

 (  a    ⊕    b  )  ⋅    c   =  a    ⋅    c    ⊕    b    ⋅    c  .
 (g)  a    ⋅    a   =  a  .

 Theorem 1  : The algebra  U  n   satisfies the axioms of a boolean ring under symmetric differ-
 ence and product.

 Proof  :  a  ,  b   and  c   are any three elements of  U  n  .  The empty set  ∅   is the zero element of  U  n  .
 (a) The product or symmetric difference of two shapes is a shape, which may be equal to  ∅  ,
 in the same algebra.  This shape is unique; it is composed of the point set that is the result of
 the intersection, respectively, symmetric difference, of the point sets corresponding to the two
 shapes.  For each operation, any point in the point set can be determined, uniquely, as to

 whether it belongs to the resulting point set or not.

 (b) The symmetric difference of two shapes  a   and  b   contains the subshape of  a   that does not
 belong to  b   and the subshape of  b   that does not belong to  a  .  Since the shapes  a   and  b   are

 interchangeable in this definition, the operator is commutative.

 (c) Given the point sets  P  a  ,  P  b   and  P  c  , corresponding to arbitrary shapes  a  , b and c,
 respectively, we distinguish the following point sets  P  ijk  :

 P  abc  , the point set belonging to all three shapes  a  ,  b   and  c  ;  P  abc    ⊆    P  a  ,  P  b   and  P  c  .
 P  ab  ¬  c  , the point set belonging to both  a   and  b   but not to  c  ;  P  ab  ¬  c    ⊆    P  a  ,  P  b  ;  P  ab  ¬  c    ⊄    P  c.
 P  a  ¬  bc  , the point set belonging to both  a   and  c   but not to  b  ;  P  a  ¬  bc    ⊆    P  a  ,  P  c  ;  P  a  ¬  bc    ⊄    P  b  .
 P  ¬  abc  , the point set belonging to both  b   and  c   but not to  a  ;  P  ¬  abc    ⊆    P  b  ,  P  c  ;  P  ¬  abc    ⊄    P  a  .

 P  a  ¬  b  ¬  c  , the point set belonging to  a   but neither to  b   nor  c  ;  P  a  ¬  b  ¬  c    ⊆    P  a  ;  P  a  ¬  b  ¬  c ⊄  Pb, Pc.
 P  ¬  ab  ¬  c  , the point set belonging to  b   but neither to  a   nor  c  ;  P  ¬  ab  ¬  c    ⊆    P  b  ;  P  ¬  ab  ¬  c    ⊄   Pa, Pc.
 P  ¬  a  ¬  bc  , the point set belonging to  c   but neither to  a   nor  b  ;  P  ¬  a  ¬  bc    ⊆    P  c  ;  P  ¬  a  ¬  bc    ⊄   Pa, Pb.

 From the definition of these point sets, we can conclude that no two point sets have points in
 common and that any point in  P  a  ,  P  b   or  P  c   belongs to exactly one point set  P  ijk  .  Then, for each
 point set  P  ijk   we can determine its membership to  a    ⊕   (  b    ⊕    c  ) and (  a    ⊕    b  )  ⊕  c (the deduction

 of the composing point sets for  a    ⊕   (  b    ⊕    c  ) is shown in Table 1):
 b    ⊕    c   is composed of the point sets  P  ab  ¬  c  ,  P  a  ¬  bc  ,  P  ¬  ab  ¬  c   and  P  ¬  a  ¬  bc  .

 a    ⊕   (  b    ⊕    c  ) is composed of the point sets  P  abc  ,    P  a  ¬  b  ¬  c  ,  P  ¬  ab  ¬  c   and  P  ¬  a  ¬  bc  .
 a    ⊕    b   is composed of the point sets  P  a  ¬  bc  ,  P  ¬  abc  ,  P  ¬  ab  ¬  c   and  P  a  ¬  b  ¬  c  .

 (  a    ⊕    b  )  ⊕    c   is composed of the point sets  P  abc  ,    P  a  ¬  b  ¬  c  ,  P  ¬  ab  ¬  c   and  P  ¬  a  ¬  bc  .
 Since  a    ⊕   (  b    ⊕    c  ) and (  a    ⊕    b  )  ⊕    c   are composed of the same point sets, they must be equal

 (see Figure 2).



 Table 1
 Deduction of the point sets that make up  a    ⊕   (  b    ⊕    c  ).

 Figure 2. A planar illustration of the associativity of symmetric difference.

 (d) The equation  a    ⊕    x   =  b   has at least one solution in  U  n  :  x   =  a    ⊕   b.
 Since  a    ⊕   (  a    ⊕    b  ) = (  a    ⊕    a  )  ⊕    b   =  ∅    ⊕    b   =  b  .

 (e) When intersecting three shapes, the order is not important: The intersection of three
 shapes is the subshape common to all three shapes.

 (f) For each point set  P  ijk   we can determine its membership to  a    ⋅   (  b    ⊕    c  ) and  a    ⋅    b    ⊕    a    ⋅ c :
 b    ⊕    c   is composed of the point sets  P  ab  ¬  c  ,  P  a  ¬  bc  ,  P  ¬  ab  ¬  c   and  P  ¬  a  ¬  bc  .

 a    ⋅   (  b    ⊕    c  ) is composed of the point sets  P  ab  ¬  c   and  P  a  ¬  bc  .
 a    ⋅    b   is composed of the point sets  P  ab  ¬  c   and  P  abc  .
 a    ⋅    c   is composed of the point sets  P  a  ¬  bc   and  P  abc  .

 a    ⋅    b    ⊕    a    ⋅    c   is composed of the point sets  P  ab  ¬  c   and  P  a  ¬  bc  .
 Since  a    ⋅   (  b    ⊕    c  ) and  a    ⋅    b    ⊕    a ⋅ c are composed of the same point sets, they must be equal

 (see Figure 3).
 The proof is similar for (  a    ⊕    b  )  ⋅    c   =  a    ⋅    c   +  b    ⋅    c   (see Figure 4).

 (g)  a    ⋅    a   =  a   is trivial.  ❑

 Corollary 2  : The cartesian product of two algebras  U  n    ×    U  m  is a boolean ring.  ❑

 The immediate consequence of Theorem 1 and Corollary 2 is that every shape in  U   is finite
 because there is no ‘top’ element.  The ‘bottom’ element, of course, is the empty shape.

 P  abc  P  ab  ¬  c  P  a  ¬  bc  P  ¬  abc  P  a  ¬  b  ¬  c  P  ¬  ab  ¬  c  P  ¬  a  ¬  bc

 b  ✓  ✓  ✓  ✓

 c  ✓  ✓  ✓  ✓

 b    ⊕    c  ✓  ✓  ✓  ✓

 a  ✓  ✓  ✓  ✓

 a    ⊕   (  b    ⊕    c  )  ✓  ✓  ✓  ✓

 b    ⊕    c  a    ⊕    b a    ⊕   (  b    ⊕    c  ) = (  a    ⊕    b  )  ⊕    c



 Furthermore, two shapes or spatial elements only combine when they belong to the same
 algebra.  Thus, different algebras can act separately, yet uniformly; they operate in parallel

 though occupy the same geometric space.
 Shapes in algebra  U  n   have their boundaries in algebra  U  n  −  1   (Krishnamurti, 1992).  A shape  a
 is said to  contain   a shape  b   if  b   is a part of  a  .  Two shapes  overlap   if they have a common part,
 that is there exists a nonzero element of  U  n   that is a part of both shapes, and neither shape
 contains the other.  Two shapes  share boundary   if they do not overlap, but their boundaries
 overlap in  U  n  −  1  .  Otherwise, the two shapes are known to be  disjoint  .  Figure 5 illustrates these

 spatial relations on a pair of shapes in  U  3  .

 3. THE MAXIMAL REPRESENTATION OF SHAPES

 The maximal representation of shapes is described in (Krishnamurti, 1992).  Briefly, every
 shape is described as a set of spatial elements.  A spatial element in a shape is denoted a
 maximal spatial element   if it cannot be combined with any other spatial element in the same
 shape to form a larger spatial element.  If a shape only contains maximal spatial elements, then

 the shape is termed  maximal   and its representation is a  maximal representation  .
 The spatial elements in an algebra can be partitioned into  co-equal   equivalence classes based
 on the infinite hyperplane, denoted the  carrier  , they are embedded in.  This carrier necessarily
 has the same dimensionality as the spatial element it carries.  Then, two spatial elements in the
 same algebra can combine only if they belong to the same equivalence class; thus, if they are
 co  -equal.  The equivalence class to which a spatial element belongs is uniquely represented by

 b    ⊕    c  a    ⋅    b   and  a    ⋅    c a    ⋅   (  b    ⊕    c  ) =  a    ⋅    b    ⊕    a    ⋅    c

 Figure 3. A planar illustration of the distributivity of symmetric difference over product.

 a    ⊕    b  a    ⋅    c   and  b    ⋅    c (  a    ⊕    b  )  ⋅    c   =  a    ⋅    c    ⊕    b    ⋅    c

 Figure 4. A planar illustration of the distributivity of product over symmetric difference.



 the element’s  co-descriptor  , which specifies the equation of the carrier that defines the class.
 Therefore, the format of the descriptor will vary depending on the algebra; in other words, on

 the dimensionality of the spatial elements (Krishnamurti, 1980 and 1992; Chase, 1989).
 Each spatial element  e  can be described by a pair (  co  (  e  )  , boundary  (  e  ))  ,  where   co  (  e  ) denotes
 the  co  -descriptor of  e  , and  boundary  (  e  ) specifies the boundary elements of  e  .  If the element
 has dimensionality  n  , its boundary is a (  n  −  1)-dimensional shape.  Given a shape, that is, a set
 of spatial elements, we can reduce the set to its maximal representation.  An algorithm is given
 in (Krishnamurti, 1992); we now give an alternative formulation based on the notation
 established by Cormen et al. (1990).  We assume that the input shape,  S  , is given by a list of

 elements.

 M  AXIMAL   (  S  )
 1  S    ←  S  ORT   (  S  )   first according to their co-descriptor and then according to their

 minimum (x, y, z, …) boundary coordinates
 2  M    ← ∅
 3  e  ←    first  [  S  ]
 4  while  e    ≠    e  ∅    and    next  [  e  ]  ≠    e  ∅
 5  do    f  ←  next  [  e  ]
 6  if   co(e) < co(f)
 7•  then  M    ← Μ ∪   {  e  }

 8  e  ←    f
 9  else  e and f are co-equal, collect all co-equal elements together
 10  C  ←   {  e  ,  f  }
 11  loop    ←  (  next  [  f  ]  ≠    e  ∅  )
 12  while    loop
 13  do  f    ←  next  [  f  ]
 14  if  co(e) = co(f)

 (a)  (b)

 (c)  (d)

 Figure 5. The spatial relations between two shapes in U3: (a) contain, (b) overlap, (c) share
 boundary and (d) disjoint.



 15•  then  C    ←    C   ∪  {  f  }
 16  if  next  [  f  ]  =    e  ∅
 17  then  loop  ←  FALSE
 18  e  ←    e  ∅
 19  else  loop  ←  FALSE
 20  e  ←    f
 21•    M    ← Μ ∪  R  EDUCE   (  C  )

 22  if  e    ≠    e  ∅
 23•  then  M    ← Μ    ∪   {  e  }

 24  return  M

 e  ∅   denotes the empty element.  Comments are in italics.   first  points to the first element of a
 list, and  next   points to the next element in the list.  These are data-structure dependent.
 Statements marked by ‘•’ refer to the union, ‘  ∪  ’, operator, which represents the concatenation
 of two lists.  In principle, this can be accomplished in constant time, i.e.,  Θ  (1).  Statement 1
 sorts the input list of elements, which can be done using a standard sorting algorithm.
 Statement 21 invokes the procedure R  EDUCE   which reduces a class of  co  -equal elements to
 their maximal elements.  The procedure returns the maximal representation in  M  from

 statement 24.
 The definition of R  EDUCE   is given below.  Its input is a set  C   of  c  o-equal elements.  The
 statements indicated by ‘‡’ refer to expressions involving the difference, ‘\’, operator, which
 represents the deletion of a sub-list of one or more elements from a list, and is data-structure

 dependent.

 R  EDUCE   (  C  )
 1  R    ← ∅
 2  e  ←   first   [  C  ]
 3‡  C  ←   C   \ {  e  }

 4  while  e    ≠    e  ∅    and    first  [  C  ]  ≠    e  ∅
 5  do  f  ←  first  [  C  ]
 6‡  C  ←   C   \ {  f  }

 7  if  O  VERLAP   (  e, f  )
 8  then   e    ←  C  OMBINE   (  e, f  )
 9  else if  S  HARE  -B  OUNDARY   (  e, f  )
 10  then   e    ←  S  HARE  -C  OMBINE   (  e, f  )
 11  else if  D  ISJOINT   (  e, f  )
 12  then    if  there is a strict order on the elements of  C
 13  then  R  ←    R    ∪  {  e  }
 14  e  ←   f
 15  else  there is no strict order on the elements of C
 16  T  ←   R  EDUCE   ({  f  }  ∪  C  )
 17  T  ←   S  INGLE  -R  EDUCE   (  e  ,  T  )
 18  R  ←    R    ∪  T
 19  e  ←    e  ∅

 else    e wholely contains f and f can be ignored
 20  if    e    ≠    e  ∅
 21  then  R  ←    R    ∪  {  e  }
 22  return  R



 R  EDUCE   compares two  co  -equal elements  e   and  f  .  Either  e   and  f   are disjoint, or they are not
 in which case they overlap, share-boundary or  e   contains  f  .   f   cannot contain  e   since  e
 lexicographically precedes  f   in  C  .  In the latter cases  e   and  f   combine to form a single element.
 If  e   and  f   are disjoint, the class excluding  e   is reduced first to their maximal elements and, then,
 e   is reduced with respect to this maximal representation.  This is described in the procedure
 S  INGLE  -R  EDUCE   (statement 17).  It is possible to combine R  EDUCE   and M  AXIMAL   into a

 single procedure as was done in (Krishnamurti, 1992a).

 S  INGLE  -R  EDUCE   (  e  ,  C  )
 1  if  first   [  C  ] =  e  ∅
 2  then  R    ←   {  e  }
 3  else  g  ←   first   [  C  ]
 4‡  C  ←   C   \ {  g  }

 5  if  O  VERLAP   (  e, g  )
 6  then  h    ←  C  OMBINE   (  e, g  )
 7  R  ←   S  INGLE  -R  EDUCE   (  h  ,    C  )
 8  else if  S  HARE  -B  OUNDARY   (  e, g  )
 9  then  h    ←  S  HARE  -C  OMBINE   (  e, g  )
 10  R  ←   S  INGLE  -R  EDUCE   (  h  ,  C  )
 11  else if  D  ISJOINT   (  e, g  )
 12  then  R  ←   S  INGLE  -R  EDUCE   (  e  ,    C  )
 13  h  ←   first   [  R  ]

 14‡  R  ←   R   \ {  h  }
 15  R  ←   {  h  ,  g  }  ∪  R
 16  return  R

 Figure 6 illustrates the possible spatial situations that arise, for shapes in  U  2  , before and after
 S  INGLE  -R  EDUCE   has been invoked, when  e   and  f   are disjoint.

 Other dimensionality independent algorithms for shape arithmetic have also been developed
 (Krishnamurti, 1992a).  These include algorithms for the operations of sum, product and

 difference on shapes and the relations shape equality and subshape.
 The algorithms presented, which are valid for arbitrary   n  -dimensional shapes, are based on
 algebra-specific operations and relations that apply to pairs of  co  -equal elements within the
 same algebra.  These operations and relations are trivial for arrangements of points
 (Krishnamurti, 1992a).  In the case of arrangements of lines, shape arithmetic has been treated
 and used extensively (Krishnamurti, 1980; Chase, 1989).  Recently the theory has been
 extended to shapes made up of arrangements of planes (Krishnamurti, 1992b) and efficient
 algorithms have been demonstrated for shape arithmetic (Stouffs and Krishnamurti, 1992).  It
 should be noted that when two shapes are compared, the arithmetic reduces to comparisons

 between  co  -equal classes of elements as procedures M  AXIMAL   and R  EDUCE   illustrate.

 4. COMPLEXITY ANALYSIS

 Assume that the running time of each of the algebra-specific operations on pairs of  co  -equal
 elements, namely,  combine  ,  complement  , and  common  , and relations, namely,  disjoint  ,
 overlap  ,  share-boundary   and  contain  , is asymptotically bounded by some function  f  (  n  ), where
 n   is a measure of the size of the elements.  Then, the running times of the shape operations are

 asymptotically bound by some function of  f(n)   as the following proposition shows.



 Theorem 3  : The asymptotic upper bounds on the running times of the shape operations of
 sum, difference, product and symmetric difference are quasi-linear, and at most quadratic, in

 the number of elements  N  .  That is,  Ο  (  N    f  (  n  ))  ≤   time  ≤    Ο  (  N  2    f  (  n  )).

 Proof  : Two spatial elements combine or share a common subshape only if they belong to the
 same algebra and they are  co-  equal.  Thus, given a shape, made up of spatial elements in the
 same algebra, its elements can be partitioned into its  co  -equal classes, and these classes sorted
 on their  co  -descriptor.  Then, the lists of  co  -equal classes of two operand shapes can be
 traversed in linear time to determine the classes that are common to both shapes and,

 subsequently, to determine the resulting shape under the operation.
 Given, shapes of points (algebra  U  0  ), each  co  -equal class corresponds to a single point, and
 the algebra-specific operations and relations on points are trivial and take constant time.  For
 shapes of lines (algebra  U  1  ), each  co  -equal class may contain a list of line segments on a
 common infinite carrier line.  Then, there exists a total order on the line segments, such that
 two  co  -equal classes, one from either operand, represented as a sorted list of segments, can be
 merged in linear time.  Furthermore, two or more line segments combine only if they are

 e

 f

 e

 g

 disjoint

 e

 f

 e

 f

 e

 g

 e

 g

 overlapping

 share-boundary

 h

 g

 h

 h

 Figure 6. The possible spatial situations that can arise before and after SINGLE-REDUCE is
 invoked, in the case when e and f are disjoint (see statement 17 within REDUCE). The left most
 column indicate the elements of the shape whose first two elements in lexicographical order
 are e and f respectively. The middle column describes the situation just before SINGLE-
 REDUCE is applied and indicates the element e and the maximal elements of the shape formed
 by the remaining elements whose first element is g. The right most column describes the situa-
 tion just after SINGLE-REDUCE has been applied and indicates the maximal elements of the

 shape whose first element is  h  . The maximal elements of a shape are shaded the same.



 adjacent in the resulting list (same for common and complement).  Such a total order does not
 exist for spatial elements of higher dimension.  Then, comparing two sets of  co  -equal
 elements, e.g., as to whether they combine or not, requires comparing each element of the first
 set with each element of the second set.  Since each comparison is comprised of at most a
 single operation, namely, combine, common or complement, and, possibly, a check of up to
 four relations, namely, disjoint, overlap, share boundary and contain, each comparison takes
 time  Θ  (  f  (  n  )).  If each  co  -equal class contains  N  k   (  k   = 1, …) elements in total, then, comparing

 each class takes at most  Θ  (  N  k  2    f  (  n  )).  The combined time over all  co  -equal classes is

 Θ  (   f  (  n  )) =  Ο  (  N  2    f  (  n  )), where  N   =  (  N  2   =  2    ≥   ).

 This is also the asymptotic upper bound on the running time of each of the shape operations of
 sum, difference, product and symmetric difference.  ❑

 We next determine  f  (  n  ) for each of the algebras  U  k  ,  k    ≥   0.

 4.1.  Point segments
 For  U  0  , the algebra-specific relations such as  overlap  ,  share-boundary   and  contain   are
 equivalent to the identity relation and the operations such as  combine  ,  complement   and

 common   also have trivial definitions.  Thus,  f  (  n  ) =  Θ  (1) for shapes of points.

 4.2.  Line segments
 For  U  1   (Krishnamurti, 1992a; Chase, 1989), the algebra-specific relations such as  overlap  ,
 share-boundary   and  contain   are functions of the boundary points of the line segments.  The
 boundary points of the line segment or segments that result from combining two line segments,
 or from taking the complement or common segment of two line segments, form a subset of the
 (at most  four  ) boundary points of both operands.  As a result,  f  (  n  ) =  Θ  (1) also for shapes of

 lines. 

 4.3.  Plane segments
 In  U  2  , the algebra-specific relations and operations on planes can be reduced to operations
 on the lines that make up the boundary of the planes (Krishnamurti, 1992b).  Using a classifi-
 cation approach and a plane-sweep technique, Stouffs and Krishnamurti (1992) have devel-
 oped an efficient algorithm for the algebra-specific relations and operations on plane segments.
 The classification approach is widely used in solid modeling for boolean operations on
 polyhedra (Mäntylä, 1988): the edges or faces of a polyhedron are subdivided according to the
 intersection with a second polyhedron and classified into three classes depending on whether
 the segments are deemed inner, outer or shared, with respect to the second polyhedron.  The
 plane-sweep technique has been used by Shamos and Hoey (1976), and adopted by others in
 computational geometry, to find the intersection of planar geometric figures, such as convex
 polygons, a single self-intersecting polygon, or convex maps (Nievergelt and Preparata, 1982).
 Briefly, a plane-sweep consists of a vertical line sweeping the plane from left to right, halting at
 certain  transition   points, e.g., the vertices of the geometric figure(s).  At any position, the
 sweep-line defines a cross section of the geometric figure(s) and the status of the sweep-line
 represents the topology of the line segments about that cross-section.  This status remains
 unchanged between two transition points and is updated at each of the transition points,
 encountered sequentially in increasing order.  All relevant information is extracted also at these

 transition points.
 The classification algorithm takes two shapes in  U  2  , determines the points of intersection

 N k 
2

 
k

 ∑  N k
k

 ∑  N  
k

k
∑ 

 
 N k 

2
 

k
 ∑



 between both shapes, splits the respective boundary segments at these intersection points, and
 classifies the (split) boundary segments into the appropriate classes for each of the shapes.  It
 does so in time  Θ  ((  m  +  n  ) log  n  ) and space  Ο  (  m  +n), where n denotes the total number of
 boundary segments of both shapes and  m   denotes the number of intersection points between
 the boundary segments of both shapes,  m   =  Ο  (  n  2  ).  Depending on the specific operation, the
 appropriate classes are joined into a single set, and a boundary traversal on the segments in the
 set extracts the resulting simple polygons or plane segments, in time  Θ  (  n   log  n  ) and space
 Ο  (  n  ), where  n   denotes the total number of line segments in the set.  (See (Stouffs and
 Krishnamurti, 1992) for proofs on these propositions.) In the case of the algebra-specific
 relations  disjoint  ,  overlap  ,  share-boundary   and  contain  , it suffices to check as to whether
 certain classes are either empty or not.  The algorithm can also be used to determine the

 maximal representation of a set of, possibly self-intersecting, polygons.
 Thus,  f  (  n  ) =  Θ  ((  m  +  n  ) log  n  ), with  m   =  Ο  (  n  2  ).

 It has been shown that, given two sets, each consisting of non-intersecting line segments,
 Ο  (  m   +  n   log  n  ) suffices to report all  m   intersections of the total  n   line segments in both sets
 (Mairson and Stolfi, 1988).  This result improves upon  f  (  n  ), for all operations and relations,

 except to determine the maximal representation of a self-intersecting polygon.

 Corollary 4  : The asymptotic upper bound on the running time of each of the shape opera-
 tions of sum, difference, product and symmetric difference, as well as the maximal representa-

 tion operation, on plane segments, is  Ο  (  N    f  (  n  )), with  f  (  n  ) =  Θ  ((  m  +  n  ) log  n  ) and  m   =  Ο  (  n  2  ).

 Proof  : Given the fact that the classification algorithm outlined above applies to sets of  co  -
 equal maximal plane segments (Stouffs and Krishnamurti, 1992), instead of single plane seg-
 ments, we can modify the algorithms for the shape operations of sum, difference, product and
 symmetric difference, as well as the maximal representation algorithm, to run in linear time on
 the number of  co  -equal classes in both shapes.  For example, in the M  AXIMAL   algorithm pre-
 sented in section 3, the call to R  EDUCE   may be replaced by a single call to the classification
 algorithm.  As a result, the asymptotic upper bound on the running times of the shape opera-

 tions and the maximal operation becomes at most  Ο  (  N    f  (  n  )), compared to Theorem 3.  ❑

 4.4.  Volume segments
 The classification approach, as stated, has been used extensively on solids, or volume
 segments.  The concept of the plane-sweep technique can be extended to a space-sweep
 technique for polyhedra.  Hertel et al. (1984) determine the intersection of two convex
 polyhedra using a space-sweep to find all intersection points of both polyhedra, followed by a

 single boundary traversal. 
 The first step in the classification algorithm for shapes in  U  3   determines the lines of
 intersection between boundary planes of both shapes, splits the respective boundary planes at
 these intersection lines, and classifies the (split) boundary planes into the appropriate classes
 for each of the shapes.  Determining the intersection line of two infinite planes takes constant
 time.  However, given two plane segments, determining the common line segments takes time

 Ο  (  l  ), where  l   is the number of boundary segments of both planes.
 The second step in the algorithm takes a given set of maximal, non-intersecting, plane
 segments and determines the resulting volume segments, using a boundary traversal.  Whereas
 the boundary traversal in  U  2   is a linear process that determines cycles made up of boundary
 line segments, the boundary planes of a solid form an adjacency graph, and the corresponding
 traversal is a tree traversal process.  Starting with a single plane, its boundary lines are placed
 in a  horizon  .  Out of the horizon, a single line is chosen and the traversal continues to the plane



 that shares a boundary segment with this line and that is part of the same simple polyhedron.
 The boundary lines of the new planes are added to the horizon and the common segment is
 removed from the horizon.  As such, at any time, the horizon contains a connected list of line
 segments that marks the current edge of the set of planes which starts to form the boundary of

 the volume segment.  This segment is completed when the horizon is empty.
 However, in a similar way as for plane boundaries, the extracted surface of planes may touch
 itself and as such define a volume segment that contains one or more  holes  .  The boundary of a
 hole and the boundary of the outer shell must have a single, open concatenation of line
 segments in common, that can be recognized during the traversal, and appropriately processed

 subsequently.
 Such an algorithm may also be used to determine the maximal representation of a volume

 segment (or volume segments) defined by a set of boundary planes, that possibly intersect.
 The following, F  OO  , is an outline summary of the basic algorithm that underlies the shape

 operations on volume segments.

 F  OO   (  S  )
 S is the set of plane segments

 1  for   each plane  p   in  S
 2  do  split  [  p  ]  ←    ∅
 3  for   each pair of planes (  p  ,  q  ) in  S   that intersect
 4  do  l    ←   the carrier line of intersection of  p   and  q
 5  P    ←    ∅
 6  for   each boundary segment  s   of  p   and  q   that intersects  l
 7  do  P    ←    P    ∪   { I  NTERSECTION  -P  OINT   (  s  ,  l  ) }
 8  P    ←   S  ORT  (  P  )   according to their (x, y, z, …) coordinates
 9  L    ←    ∅
 10  for   each consecutive pair of points (  u  ,  v  ) in  P
 11  do  L    ←    L    ∪   { C  REATE  -L  INE  -S  EGMENT   (  u  ,  v  ) }
 12  split  [  p  ]  ←    split  [  p  ]  ∪    L
 13  split  [  q  ]  ←    split  [  q  ]  ∪    L
 14  T    ←    ∅     T is the new set of plane segments
 15  for   each plane  p   in  S
 16  do  T    ←    T    ∪   { S  PLIT  -P  LANE  -S  EGMENT   (  p  ,  split  [  p  ]) }
 17  G    ←   A  DJACENCY  -G  RAPH   (  T  )   where adjacency is determined by the sharing of

 boundaries between two planes
 18  R    ←    ∅     R is the resulting set of shells
 19  while    G    ≠    ∅
 20  do  p    ←   plane segment in  G   that is known to belong to an outer shell
 21  H    ←    boundary  [  p  ]
 22  P    ←   {  p  }
 23  G    ←    G   \ {  p  }
 24  for   each segment  h   in  H
 25  do  q    ←   plane segment in  G   the boundary of which contains  h
 26  H    ←   M  ERGE   (  H  ,  boundary  [  q  ])
 27  H    ←    H   \ {  h  }
 28  P    ←    P    ∪   {  q  }
 29  G    ←    G   \ {  q  }
 30  R    ←    R    ∪   S  HELLS   (  P  )   splits the set of P into a set of simple shells



 5.  CONCLUSION

 We have shown the following:
 An algebra  U  k  specified by the set of all   k  -dimensional hyperplanar segments,  k  ≥   0,  closed
 under union and the euclidean transformations augmented by scale is a boolean ring under
 intersection and symmetric difference.  Moreover, the cartesian product of two shape algebras
 have the same property.  In other words, we always deal with finite shapes no matter how large
 they are.  More importantly, we deal with shapes in a uniform manner independent of the

 dimensionality.
 Since shapes in algebra  U  k   have their boundaries in algebra  U  k  -1  , the algebra-specific
 operations that apply to pairs of co-equal elements within the same algebra U  k   depend on the

 shape operations defined in U  k  -1  , and so do the complexities.
 The asymptotic upper bound on the time complexity of shape arithmetic on two shapes
 within any shape algebra is quasi-linear and possibly strictly linear in the number of maximal
 spatial elements of both shapes.  There does not appear any connection between the time
 complexity and the existence of a total order on the elements in the algebra as the algorithm for

 planar segments illustrates.
 f(n)  , the asymptotic upper bounds on the time complexity of comparing two  co-  equal spatial
 elements with maximum boundary size  n  , have been considered for shapes in  U  k  ,  k  ≤   3 and

 determined for   k  ≤    2  .   For  k <  2  ,    f(n)   is a constant,    i.e.,  Ο  (1); and for  k   = 2,

   f  (  n  ) =  Θ  ((  m  +  n  ) log  n  ), with  m   =  Ο  (  n  2  ).

 For  k   = 3, we conjecture a similar result.  For shapes in  U  3  , we have outlined an algorithm that
 forms the framework for shape arithmetic on volume segments.  Further work still remains to

 be done.
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