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Abstract
In this paper we describe a low cost embedded vision sys-
tem, the CMUcam2. The CMUcam2 is the second gen-
eration of the CMUcam system and attempts to overcome
the shortcomings of the original system as well as improve
upon and add to its functionality. The goal of the system
is to provide simple vision capabilities to small embedded
systems in the form of an intelligent sensor. The system uti-
lizes a low cost CMOS color camera module, a frame buffer
chip and all image data is processed by a low cost micro-
controller. The system includes the original functionality
of color blob tracking, but improves upon it with tracking
speeds of up to 50 frames per second. New functionality
includes frame differencing, edge detection, and color his-
togramming. Other improvements were also made to fa-
cilitate communication with slower speed processors, as is
often the case in a variety of robotics applications, including
miniature robotics, hobby robotics and aerial robots.

1 Introduction
In many applications relatively simple computer vision al-
gorithms have proved themselves to be extremely useful,
[3], [5], [6], [8], [13], [15]. It has been challenging to im-
plement even these simple computer vision algorithms in
embedded systems which utilize small microcontrollers be-
cause traditional vision system implementations require a
camera, a frame grabber, and a high speed processor. The
goal of the system developed here is to provide this func-
tionality in a small low power package and provide a low
bandwidth data stream to a host processor. This has become
possible because of the availability of low cost CMOS color
camera modules and high speed, low cost microcontrollers.

In our previous system, the CMUcam, we attempted to
use the minimal amount of hardware which could imple-
ment basic functionality. This system processed pixels "on
the fly" using very little memory which placed certain limi-
tations on the image processing algorithms. The CMUcam2

extends the CMUcam’s functionality by including a frame
buffer chip which decouples the pixel capture and process-
ing operations. This in combination with a more capable
microcontroller allowes for more complex and flexible pro-
cessing.

The system described in this paper has been imple-
mented and is fully functional. A fully assembled version
of the system is available from multiple commercial ven-
dors for a cost of $199. [10]

2 System Architecture
Our vision system is designed to provide high-level infor-
mation that is extracted from a camera image and commu-
nicated to an external processor. For example the external
processor in a mobile robot system could configure the vi-
sion system’s color tracking mode to stream the centroid
location of a particular bounded set of RGB values. The vi-
sion system would process the data in real time and output
high-level information. In the following sections we de-
scribe the details of our hardware and software system and
compare our new system to the previous version.

2.1 Hardware
The hardware for our original system consisted of a three
chip design: a CMOS camera chip, a microcontroller, and a
simple RS232 level shifter. Our new design adds a fourth
chip, a frame buffer. In this design the camera is con-
nected directly to the frame buffer chip. The processor trig-
gers a frame grab and the frame buffer chip stores the data
streamed from the camera without further intervention by
the processor. Once the data is in the frame buffer, the pro-
cessor can synchronously clock the data out of the frame
buffer as needed. The microcontroller processes the data
stream and extracts user defined information that is sent to
the outside world via an asynchronous serial interface im-
plemented in software. The complete vision system is 2.20"
x 2.20" and less than 2" deep with the camera module and
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Figure 1: The controller board mated with the CMOS sen-
sor.

lens attached, see Figures 1 and 2. The system operates at
5 volts and draws 170 milliamperes of current while fully
active.

The image input to the system is provided by an Om-
nivision OV6620 or OV7620 CMOS camera on a chip.[9]
The CMOS camera is mounted on a carrier board which
includes a lens and supporting passive components. By it-
self, the board is free running and will output a stream of
8 bit RGB or YCrCb color pixels. Synchronization signals,
including a pixel clock, are then used to read out data and
indicate new frames and horizontal lines. When used in
concjuntion with our system, the OV6620 supports resolu-
tions of up to 352 x 288 with a maximum refresh rate of
50 frames per second (fps) and the OV7620 supports reso-
lutions of up to 240 x 160 with a maximum refresh rate of
60 fps. Camera parameters such as color saturation, bright-
ness, contrast, white balance, exposure time, gain and out-
put modes are programmable using a standard serial I2C
interface. An analog monochrome output exists that can be
used for external monitoring of the image. Unlike the origi-
nal CMUcam which used a nonstandard frame rate, making
this output difficult to use, the current system generates a
standard video signal.

The main microcontroller used to process the video data
is a Ubicom SX52 operating at 75 MHz.[14] The SX52 is
a RISC processor and operates at 75 MIPS including sin-
gle cycle I/O operations. It has a 4096 word flash pro-
grammable EEPROM and 262 bytes of SRAM. Although
the computational capabilities of this processor are the same
as the SX28 used in the original CMUcam, the SX52 has
twice the ROM and RAM, as well as additional I/O ports
which permitted us to include extra functionality. The pro-
cessor has very few hardware peripherals, but has fast and
deterministic interrupts and flexible I/O ports that allow
software to emulate standard hardware peripherals in a vir-

tual manner. Using these "virtual peripherals", we imple-
mented a serial UART port, standard hobby servo PWM
output ports, LED status functions and a push button in-
put. It is also possible, using a pass-through PC104 style
connector, to join multiple vision boards on a single camera
bus. This allows for parallel processing of the image data
in what we call slave mode. Using this "slave mode" two
microprocessors can be attached to the output of a single
CMOS camera, allowing two different image operations to
be performed in a fully synchronized fashion. The frame
buffer is the AL422B manufactured by Averlogic. It con-
tains 384K bytes of storage in a FIFO configuration. [1]
The FIFO nature of the memory means that the processor
is limited to sequential accesses to the image buffer. An in-
ternal address counter keeps track of the current location in
the image. The image buffer memory is dual ported allow-
ing the camera to simultaneously write to the memory while
the processor is reading from it.

We chose the Averlogic FIFO for three main reasons.
First, the interface is very simple. The FIFO has very few
control pins, which is critical when dealing with a micro-
controller with limited I/O capabilities. Secondly, the FIFO
can now manage the data transfer from the camera to the
frame buffer at the level of a single frame instead of a sin-
gle pixel. This allows the transfer to take place much faster
than the processor would be able to handle on its own. This
decoupling also allows us to do more complicated process-
ing on each pixel. A third benefit of the image buffering is
that the camera can operate at full frame rate. Running the
camera at full frame rate yields better automatic gain and
exposure performance due to the factory default tuning of
the system. An unexpected benefit from the frame buffer
was an increase in the processing speed per frame. This
happened because in the original CMUcam the pixel timing
had to be such that the timing conditions were met for the
worst case path through the code. In the new design the pro-
cessor accesses pixels as it needs them and therefore timing
is no longer constrained to the worst case. The disadvantage
is the lack of random access to the data, the additional cost
of the component as well as the extra power consumption.
Even though we are limited to sequential data access much
like in the original CMUcam, we now also have the ability
to reset the read pointer of the FIFO without overwriting
data. This allows multiple processing functions to be called
on the same buffered image.

In many embedded applications power consumption is
an important factor and it is often advantageous to be able
to shutdown systems when they are not needed. To facilitate
power savings we provide support to sleep the processor,
the oscillator, and the camera module. This is advantageous
in security or battery powered sensing environments when
the camera is used at very low duty cycles. During normal
operation, the camera consumes 850mW of power. When in

2



sleep mode, this is reduced to 505mW, and in a deep sleep
mode where the oscillator is disabled, this can be further
reduced to 420mW.

Figure 2: Detail of the assembled microcontroller board,
2.20” × 2.20”. Visible are the microcontroller in the mid-
dle, the frame buffer in the upper right, the clock oscillator
in the upper left and the RS232 level shifter in the lower
right.

2.2 Firmware
The main challenges of the original CMUcam design were
limited RAM and ROM in the processor as well as the strict
code timing requirements necessitated by processing the
data "on the fly." The stringent timing requirements were
greatly ameliorated by the addition of the frame buffer, be-
cause the processor no longer has a strict deadline required
for each pixel capture. However, we still paid close atten-
tion to efficiency in order to maximize image processing
speed. Even with the increased RAM and ROM available
in our system, space was still extremely limited. In our
never ending desire to maximize the functionality of the
system, we utilized 99.87% of the ROM. And because the
frame buffer did not support random access, state informa-
tion needed to be stored in the processor’s RAM which is
much too small (262 bytes) for even a single row of pixel
data.

All firmware for the vision board was written in C and
compiled using the ByteCraft SXC compiler. When com-
piled the current firmware requires 4087 words of ROM and
at some points utilizes all but 2 bytes of the SX52’s RAM.

2.2.1 Color Blob Tracking

The color blob tracking algorithm allows the user to en-
ter a minimum and maximum bound for each of either the
three RGB or YCrCb channel values, depending on how the
camera is configured. Each pixel in the buffer is compared
against the user specified bounds. The coordinates of the

pixels that fall within the color bounds are compared against
previously stored coordinates to generate a bounding box.
This simple method requires that the CMUcam2 store lit-
tle global information about the image. The stored data in-
cludes the upper left x1, y1 coordinate and the lower right
x2, y2 coordinate that enclose pixels which satisfy the color
bounds. We also count how many pixels actually fall within
the color boundaries. Once the entire frame has been pro-
cessed, some additional post processing operations are per-
formed. In particular, a scaled ratio between the total sum of
pixels within the color boundaries and the actual area cal-
culated by the bounding box is computed. This value can
then be used as a confidence measure indicating whether
there is only one compact object being tracked which fills
the bounding box or multiple small detections. The sys-
tem also accumulates the x and y positions of each detected
pixel. These accumulated sums are then divided by the total
number of detected pixels to calculate the centroid of the
tracked object. Once it has received an entire frame of data,
the system can return the x,y coordinates of the centroid,
the four coordinates of color bounding box, the number of
detected pixels as well as a confidence value for the object
tracked. The camera can be put into "line mode" which in
turn returns a binary image of the pixels being tracked. As
shown in figure 3, another variation on line mode returns the
minimum and maximum tracked pixel as well as a centroid
for each row. This mode of operation is particularly useful
for applications such as line following.

Figure 3: The left image shows a frame dump of a red ob-
ject. The right image shows the same image being pro-
cessed with line mode enabled. The yellow lines show the
horizontal starting and ending positions of the object, while
the magenta dots show the centroid of each line.

2.2.2 Color Statistics

The vision system also includes a color statistic acquisition
function. This function keeps a running sum of the indi-
vidual color channel components. Upon completion of the
frame, it divides these accumulated values by the total num-
ber of pixels returning the mean color. It also returns an
approximation of the absolute deviation from the mean of
each color. This can be used to quantify the spread of the
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colors about the mean. When used in conjunction with other
features such as windowing, described following, the color
statistics can be used for determining the color of an object
at a specific location in the field of view.

In order to provide a richer set of color related data, there
is also a histogram function. The histogram operation al-
lows the user to determine the distribution of a color across
the image. The histogram contains 28 bins each holding
the number of pixels that occurred within that bin’s range
of color values. So bin 0 on channel 0 would contain the
number of red pixels that were between 16 and 23 in value.

2.2.3 Frame Differencing

Figure 4: The left image shows an example of a reference
frame. The right image shows a bitmap of a hand being
moved in front of the scene.

The CMUcam2 incorporates the ability to identify dif-
ferences between the current image and a reference frame.
This is useful when attempting to locate motion given a
fixed camera position. When in frame differencing mode,
the CMUcam2 tessellates the image into an 8 by 8 grid. All
of the pixels for a user defined channel in each square are
averaged creating a reference low resolution image. Figure
4 shows an example of such an image. When new frames
are captured, this same calculation is performed except now
the values are compared with the stored values. The user
can define a threshold delta value that can be used to in-
crease or decrease sensitivity. The outputs of the frame dif-
ferencing commands are nearly identical to that of color
tracking. Additionally, a motion bounding box, centroid
and "line mode" binary bitmap are available. It is also possi-
ble to export the detected delta values, the original averaged
values or the current averaged values. Figure 4 shows the
bitmap version of a hand moving in front of the camera. In
this image, virtual high resolution frame differencing is en-
abled. In high resolution mode, the camera will operate at
16x16 instead of 8x8. The captured image is still stored in-
ternally at 8x8. The extra resolution is achieved by doing
4 smaller comparisons against each internally stored pixel.

This generally yields good results when the background im-
age is relatively smooth, or has a uniform color.

2.2.4 Image Processing and Camera Settings

Another group of functions define how the data is formatted
and performs minor adjustments on the overall performance
of the system. These functions include a noise filter, an in-
terface transfer flow control setting and a command to mod-
ify the CMOS camera’s internal image settings. The noise
filter mode makes any color tracking algorithm more robust
by requiring a detection to include a user defined number of
multiple horizontally adjacent pixels in the specified color
range. This added robustness however can cause small ob-
jects not to be detected. The interface flow control settings
allow configuration of the serial data entering and leaving
the system. The default mode uses visible ASCII characters
and continuously streams data as each frame is processed.
Selecting "poll mode" instead causes each function to only
return one packet of data and then return to its idle state.
Another setting allows for raw binary bytes to be transferred
instead of visible ASCII text and suppresses or enables dif-
ferent synchronization bytes reducing overhead. It is also
possible to set an output data mask so that only user de-
fined values in a packet are returned. This type of flexibil-
ity was lacking in the original CMUcam and has proven to
be very helpful when dealing with less powerful microcon-
trollers. The camera settings control command allows the
user to change the frame rate, toggle white balance, toggle
gain, switch between RGB and YUV modes or set any of
the camera’s internal register values. [9]

Figure 5: Sample frame grab from the OV7620 camera
module with the corresponding frame while pixel differenc-
ing is enabled.

The ability to enter what is known as pixel differenc-
ing mode allows the entire standard set of image processing
routines to operate on what is similar to a horizontal edge
detected image. As seen in figure 5, by operating on the dif-
ference between the current and previous horizontal pixel,
high frequency components in each color channel are em-
phasized. In combination with the histogram mode, or even
the mean statistics data, this can indicate the level of texture
on an objects surface.
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Along with the basic algorithmic functions, there is a set
of modifying parameters that allow for more advanced im-
age processing. The first of these parameters is the ability
to arbitrarily set the window size and location that the user
wishes to process. This allows data to be captured in an
isolated region of the camera’s view. The window bound-
ing box can be easily changed between frames allowing for
more localized analysis of the environment. New to the
CMUcam2, the image can also be down sampled allowing
for more rapid processing. These features can be used in
conjunction with the frame buffer making it possible to op-
erate on the same image in the FIFO multiple times before
reloading a new image.

2.2.5 Demo Mode and Additional Features

To accommodate systems where extra actuators may be nec-
essary, the camera board has the internal ability to control
up to five standard hobby servos. Using this ability, the
vision system can operate in a stand-alone "demo mode".
Upon startup, if the board detects that the button is de-
pressed, it will automatically enter demo mode. While
the camera adjusts to the current light level, a status LED
blinks. When the button is pressed again, the camera ac-
quires the color of the first object it sees upon power up and
tracks it using a simple feedback loop driving two servos on
the horizontal and vertical axis. The positions of the servos
can be set or read manually, even while demo mode is ac-
tive. The servo output ports can also be used as TTL digital
outputs instead of generating a servo PWM signal. For de-
bugging purposes there are two firmware controlled LEDs,
one of which can be set to illuminate when the sensor de-
tects an object. These LEDs and the button can be manually
accessed via user commands.

2.3 Interface
The vision system by default uses a human readable ASCII
communication protocol that allows the user to communi-
cate with it interactively from a serial terminal program. As
described previously, a less verbose mode can be enabled to
reduce serial port traffic when communicating directly with
a computer or another microcontroller. When communicat-
ing with a computer, the system can also dump an entire
raw image via the serial port. This can be used for diagnos-
tic purposes or higher resolution processing. At the current
default frame rate and at the maximum window size of 255
x 176 a full frame dump takes about 10 seconds. With down
sampling and selecting individual channels, it is possible to
send multiple frames per second.

By default, all communication with the board takes place
at 115.2 kilobaud, but jumpers can be used to select val-
ues ranging from 1.2 to 115.2 kilobaud speeds. The CMU-
cam2 contains 47 commands each of which are followed by

their associated parameters. Below is a small example of a
typical set of command transactions used to track the mean
RGB color located in the middle of the image. The vision
system output is shown in italics:

CMUcam2 v1.01c6

:cr 18 44 17 2 19 32

ACK

:vw 30 60 50 80

ACK

:pm 1

ACK

:gm

ACK

S 150 20 30 5 2 6

:pm 0

ACK

:sw 0 0 80 143

ACK

:tc 145 18 24 155 22 36

ACK

M 50 80 38 82 53 128 35 98

M 52 81 38 82 53 128 35 98

M 51 80 38 84 53 128 35 98

The first command "CR" sets the CMOS camera registers.
The numbers that follow are register addresses and param-
eters, for example 18 44 tells the camera to set the color
mode to RGB and turn on automatic white balance. These
values are outlined in the vision system documentation [9]
as well as the CMOS camera documentation.[8] The "SW"
command sets the coordinates of the virtual window to be
processed. In this case x1=30 y1=60 x2=50 y2=80,which
selects the center of the image assuming the ov6620 camera
operating in low resolution mode. The "PM 1" command
turns on the poll mode of the camera so that any additional
functions will only return a single line and not stream data.
The "GM" command then asks the camera to get the mean
value in the current window. The resulting "S" packet shows
the Rmean, Gmean, Bmean, followed by the Rdeviation ,
Gdeviation and Bdeviation . Next, poll mode is disabled and
the window is set back to encompass the entire image. The
final "TC" command actually calls the track color function,
passing in a minimum RGB value of (145,18,24) and a max-
imum value of(155,22,36). This value is the mean value
previously returned from the camera now padded by its de-
viation. The returned M packets appear at up to 50 frames
per second and show the centroid x, y coordinates the x1,
y1, x2, y2 bounding box coordinates, the number of de-
tected pixels and the confidence value of the object being
tracked: M x y x1 y1 x2 y2 pixels confidence.

To aid in system integration, we have also developed a
new Java based graphical user interface (GUI) that allows
the user to interface with the camera from a Unix or Win-
dows based PC. This GUI has been greatly expanded upon
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Figure 6: The top screenshot is of the main CMUcam2 GUI
window. The lower screenshot shows the camera configu-
ration option panel.

since the original CMUcam and allows for almost all ele-
ments of the camera to be explored in a user friendly en-
vironment. The GUI graphically displays real-time data
from the camera in a more natural manner. For example,
the user can enter color bounds into a dialog box and then
issue a track color command. The GUI then formats that re-
quest and sends it to the camera. The output of the camera
data is parsed and displayed in a window that shows the ac-
tual bounding box whose colors depend on the confidence
value returned. Depending on how it is configured, the "line
mode" binary image and the centroid may also be overlaid
on the bounding box, as seen in Figure 3. When the user
calls the statistics function, the returned color data is mixed
and displayed. One of the most important features of the
GUI its ability to display a frame dump. The main GUI
window and the configuration panel are shown in figure 6.

3 Related Work
The many hardware and software systems that have been
constructed by the computer vision community are too nu-
merous to list here. However, some well known systems
have had similar goals to the work described here. The
Cognachrome vision system [12] which consists of custom
frame grabber and processing hardware has functionality
most similar to the system we describe here. The Cog-
nachrome system is more capable than the system described
here, it can track 25 objects at 60 Hz. However the system
described here is significantly less complex and physically
smaller making it more attractive for applications like on
board vision for small mobile robots. The MIT Cheap Vi-
sion Machine [2] has a similar overall architecture to the
Cognachrome system and is similarly more capable than the
system described here, but is also significantly more com-
plex. A number of systems [3], [4], [7] consist of highly
optimized software systems which rely on standard desk-
top computer systems to process image data. The system
here is unique in that it targets applications where includ-
ing the capabilities of a standard desktop machine would be
prohibitive because of size, cost, or power requirements.

4 Conclusions and Future Work

The goal of this work was to overcome the shortcomings
of the CMUcam system as well as improve upon and add
to its functionality. With the addition of a frame buffer, we
were able to increase performance of color tracking from a
maximium of 17 frames per second to 50. We were also
able to enhance the interface software making integration
of the system with low end microcontrollers even simpler.
The extra code space on our main processor made frame
differencing, and histogram generation possible, while leav-
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ing enough space to enhance the configurability of all other
legacy functions. The system has already proven its useful-
ness in a vast array of educational and research projects.

The single most important drawback of this system is
the difficulty involved in developing additional on chip al-
gorithms in firmware given the scarce resources and com-
plexities of firmware coding on the SX-52 microprocessor.
Ideally, we would like a more flexible open source devel-
opment environment with more code space and enough on-
board memory to hold a single frame. This would then open
up an even wider range of applications and allow for com-
munity development. To meet these needs, we have already
developed a prototype ARM7 based fully reprogrammable
system. We also intend to significantly reduce the power
consumption of this future system so as to enable long term
battery operation.
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